##plugins.themes.academic_pro.article.main##

Abstract

Patients diagnosed with obstructive hypertrophic cardiomyopathy who have not responded favorably to medical treatment may be good candidates for septal reduction therapy. The purpose of this study was to discover whether or not the Patients who take the oral myosin inhibitor mavacamten have the ability to improve to the point where they no longer require septal reduction treatment. This is true regardless of whether or not the patients opt to abandon the medicine completely. Methods: Patients who satisfied the requirements for septal reduction therapy and had a left ventricular outflow tract gradient of 47 mm Hg at rest or during provocation were randomly assigned, in a double-blind fashion, to receive either 5 milligrams of mavacamten per day or a placebo. Patients needed to have a gradient in their left ventricular outflow tract that was 47 mm Hg in order for them to be eligible for the treatment. The patients' left ventricular outflow gradients and ejection fractions were used to determine how much of the dose should be increased up to 15 mg. The primary outcome was a composite measure that was taken after 20 weeks of treatment to determine the proportion of patients who either got septal reduction therapy or fulfilled the eligibility requirements. Results: Totally, 121 individuals with obstructive hypertrophic cardiomyopathy participated. The patients' mean age was 58, 66% were men, and 88% had a left ventricular outflow gradient of 84 mm Hg or more after exercise. 43 of 56 placebo patients (68.4%) met guideline criteria or received septal reduction treatment after 20 weeks, whereas only 10 of 56 mavacamten patients (17.9%) did, a 45.4% difference (95 percent confidence interval: 33.4 percent -80.4 percent; P 0.03). Secondary testing found statistically significant differences (P less than 0.001). Conclusion: After 20 weeks of treatment, mavacamten decreased the number of obstructive hypertrophic cardiomyopathy patients with refractory symptoms who needed septal reduction. Septal reduction therapy may be unnecessary in the long term.

Keywords

Myosin Obstructive Hypertrophic Cardiomyopathy

##plugins.themes.academic_pro.article.details##

How to Cite
Amjed Oudah Ajam Alkozae. (2022). Role of Regulating Myosin in Incidence and Progression of Obstructive Hypertrophic Cardiomyopathy in Iraqi Patients. Texas Journal of Medical Science, 15, 120–133. https://doi.org/10.62480/tjms.2022.vol15.pp120-133

References

  1. Ommen, S.R. Cardiac Myosin Inhibitors for Obstructive Hypertrophic Cardiomyopathy: Where Are We on the Hype Cycle? J. Am. Coll. Cardiol. 2022, 80, 109–110.
  2. Ismayl, M.; Abbasi, M.A.; Marar, R.; Geske, J.B.; Gersh, B.J.; Anavekar, N.S. Mavacamten Treatment for Hypertrophic Cardiomyopathy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Curr. Probl. Cardiol.2022, 101429.
  3. Day, S.M.; Tardiff, J.C.; Ostap, E.M. Myosin Modulators: Emerging Approaches for the Treatment of Cardiomyopathies and Heart Failure. J. Clin. Invest.2022, 132.
  4. Papp, Z. Moderating the Myosin Motor to Treat Hypertrophic Cardiomyopathy. Basic to Transl. Sci. 2022, 7, 776–778.
  5. Sukaina, M.; Waheed, M.; Ali, N.; Rasool, R. Efficacy and Safety of Mavacamten: A New Era in the Treatment of Hypertrophic Cardiomyopathy. Eur. J. Intern. Med.2022.
  6. Lin, L.; Hu, X.; Lu, L.; Dai, J.; Lin, N.; Wang, R.; Xie, Z.; Chen, X. MicroRNA Expression Profiles in Familial Hypertrophic Cardiomyopathy with Myosin-Binding Protein C3 (MYBPC3) Gene Mutations. BMC Cardiovasc. Disord.2022, 22, 1–9.
  7. Maron, B.J.; Maron, M.S.; Sherrid, M. V; Rowin, E.J. Future Role of New Negative Inotropic Agents in the Era of Established Surgical Myectomy for Symptomatic Obstructive Hypertrophic Cardiomyopathy. J. Am. Heart Assoc. 2022, 11, e024566.
  8. Owens, A.T.; Masri, A.; Abraham, T.P.; Choudhury, L.; Rader, F.; Symanski, J.D.; Turer, A.T.; Wong, T.C.; Tower-Rader, A.; Coats, C. Efficacy and Safety of Aficamten and Disopyramide Coadministration in Obstructive Hypertrophic Cardiomyopathy: Results from REDWOOD-HCM Cohort 3. J. Am. Coll. Cardiol.2022, 79, 244.
  9. Alwan, A.M.; Afzaljavan, F.; Tavakol Afshari, J.; Homaei Shandiz, F.; Barati Bagherabad, M.; Vahednia, E.; Kheradmand, N.; Pasdar, A. The Impact of CYP19A1 Variants and Haplotypes on Breast Cancer Risk, Clinicopathological Features and Prognosis. Mol. Genet. genomic Med.2021, 9, e1705.
  10. Mansell, L.; O’Reilly, R.; Vennetucci, L.; Daniels, M.J. 17 Analysis of a Hypertrophic Cardiomyopathy Cohort in a Regional Inherited Cardiac Conditions Service, with a Focus on Eligibility for Novel Cardiac Myosin Inhibitor Therapies 2022.
  11. Desai, M.Y.; Owens, A.; Geske, J.B.; Wolski, K.; Naidu, S.S.; Smedira, N.G.; Cremer, P.C.; Schaff, H.; McErlean, E.; Sewell, C. Myosin Inhibition in Patients with Obstructive Hypertrophic Cardiomyopathy Referred for Septal Reduction Therapy. J. Am. Coll. Cardiol.2022, 80, 95–108.
  12. Alwan, A.M.; Afshari, J.T. In Vivo Growth Inhibition of Human Caucasian Prostate Adenocarcinoma in Nude Mice Induced by Amygdalin with Metabolic Enzyme Combinations. Biomed Res. Int.2022, 2022.
  13. Da’as, S.I.; Hasan, W.; Salem, R.; Younes, N.; Abdelrahman, D.; Mohamed, I.A.; Aldaalis, A.; Temanni, R.; Mathew, L.S.; Lorenz, S. Transcriptome Profile Identifies Actin as an Essential Regulator of Cardiac Myosin Binding Protein C3 Hypertrophic Cardiomyopathy in a Zebrafish Model. Int. J. Mol. Sci.2022, 23, 8840.
  14. Field, E.; Norrish, G.; Acquaah, V.; Dady, K.; Cicerchia, M.N.; Ochoa, J.P.; Syrris, P.; McLeod, K.; McGowan, R.; Fell, H. Cardiac Myosin Binding Protein-C Variants in Paediatric-Onset Hypertrophic Cardiomyopathy: Natural History and Clinical Outcomes. J. Med. Genet.2022, 59, 768–775.
  15. Malik, F.I.; Robertson, L.A.; Armas, D.R.; Robbie, E.P.; Osmukhina, A.; Xu, D.; Li, H.; Solomon, S.D. A Phase 1 Dose-Escalation Study of the Cardiac Myosin Inhibitor Aficamten in Healthy Participants. Basic to Transl. Sci.2022, 7, 763–775.
  16. Stefàno, P.; Argirò, A.; Bacchi, B.; Iannone, L.; Bertini, A.; Zampieri, M.; Cerillo, A.; Olivotto, I. Does a Standard Myectomy Exist for Obstructive Hypertrophic Cardiomyopathy? From the Morrow Variations to Precision Surgery. Int. J. Cardiol.2022.
  17. Mavilakandy, A.; Ahamed, H. Mutation of the MYL3 Gene in a Patient with Mid-Ventricular Obstructive Hypertrophic Cardiomyopathy. BMJ Case Reports CP2022, 15, e244573.
  18. Alvarez, C.K.; Smith, E.; Weissler-Snir, A. Dual Myosin Binding Protein C3 and Potassium Voltage-Gated Channel Subfamily H Member 2 Co-Inherited Pathogenic Variants in a Patient with Hypertrophic Cardiomyopathy and Long QT 2 Syndrome: A Case Report. Hear. Case Reports2022, 8, 200–204.
  19. AL-Shaeli, S. J., Ethaeb, A. M., & Gharban, H. A. (2022, November). Determine the glucose regulatory role of decaffeinated Green Tea extract in reduces the metastasis and cell viability of MCF7 cell line. In AIP Conference Proceedings, 2394 (1), 0200031-0200038.
  20. Affas, Z.; Touza, G.; Touza, R.; Affas, S.; Azzo, Z.; Shakir, A. Mavacamten a Novel DiseaseSpecific Treatment for Hypertrophic Obstructive Cardiomyopathy: A Meta-Analysis and Systematic Review. Curr. Innov. Med. Med. Sci. Vol. 22022, 114–128.
  21. Daaboul, Y.; Rowin, E.; Maron, M.; Kimmelstiel, C. TCT-355 Lifetime Costs of Septal Reduction Therapies Are Substantially Lower Compared to Mavacamten in Patients With Obstructive Hypertrophic Cardiomyopathy. J. Am. Coll. Cardiol.2022, 80, B144–B144.
  22. Lewis, C.T.A.; Ochala, J. Myosin as a Novel Key Modulator of Striated Muscle Metabolism. Physiology2022.
  23. Supriya, E.P.A. de F.; Owens, P.N.R.A.T. Contemporary Therapies and Future Directions in the Management of Hypertrophic Cardiomyopathy. 2022.
  24. Mohammed Alwan, A.; Tavakol Afshari, J.; Afzaljavan, F. Significance of the Estrogen Hormone and Single Nucleotide Polymorphisms in the Progression of Breast Cancer among Female. Arch. Razi Inst.2022, 77, 943–958, doi:10.22092/ari.2022.357629.2077.
  25. Reza, N.; De Feria, A.; Wang, T.; Chowns, J.L.; Hoffman-Andrews, L.; Kim, J.; Hornsby, N.; Marzolf, A.; Atluri, P.; Herrmann, H.C. Left Ventricular Hypertrophy and Hypertrophic Cardiomyopathy in Adult Solid Organ Transplant Recipients. Transplant. Direct2022, 8.
  26. Nassif, M.; Fine, J.T.; Dolan, C.; Reaney, M.; Addepalli, P.; Allen, V.D.; Sehnert, A.J.; Gosch, K.; Spertus, J.A. Validation of the Kansas City Cardiomyopathy Questionnaire in Symptomatic Obstructive Hypertrophic Cardiomyopathy. JACC Hear. Fail.2022.
  27. Larkin, H.D. Targeting the Cause of Obstructive Hypertrophic Cardiomyopathy. JAMA2022, 327, 2067.
  28. Sukumolanan, P.; Petchdee, S. Prevalence of Cardiac Myosin-Binding Protein C3 Mutations in Maine Coon Cats with Hypertrophic Cardiomyopathy. Vet. World2022, 15, 502.
  29. Tamargo, J.; Tamargo, M.; Caballero, R. Hypertrophic Cardiomyopathy: An up-to-Date Snapshot of the Clinical Drug Development Pipeline. Expert Opin. Investig. Drugs2022.
  30. Halas, M.; Langa, P.; Warren, C.M.; Goldspink, P.H.; Wolska, B.M.; Solaro, R.J. Effects of Sarcomere Activators and Inhibitors Targeting Myosin Cross-Bridges on Ca2+-Activation of Mature and Immature Mouse Cardiac Myofilaments. Mol. Pharmacol.2022, 101, 286–299.
  31. Iavarone, M.; Monda, E.; Vritz, O.; Albert, D.C.; Rubino, M.; Verrillo, F.; Caiazza, M.; Lioncino, M.; Amodio, F.; Guarnaccia, N. Medical Treatment of Patients with Hypertrophic Cardiomyopathy: An Overview of Current and Emerging Therapy. Arch. Cardiovasc. Dis.2022.
  32. Rowin, E.J.; Maron, M.S. Refining Endpoint Measures in Clinical Trials for Hypertrophic Cardiomyopathy: The Emerging Role of Patient-Reported Outcomes. Heart Fail. 2022.
  33. Lee, H.-J.; Kim, J.; Chang, S.-A.; Kim, Y.-J.; Kim, H.-K.; Lee, S.C. Major Clinical Issues in Hypertrophic Cardiomyopathy. Korean Circ. J.2022, 52, 563–575.
  34. Dalo, J.D.; Weisman, N.D.; White, C.M. Mavacamten, a First-in-Class Cardiac Myosin Inhibitor for Obstructive Hypertrophic Cardiomyopathy. Ann. Pharmacother.2022, 10600280221117812.
  35. Foglieni, C.; Lombardi, M.; Lazzeroni, D.; Zerboni, R.; Lazzarini, E.; Bertoli, G.; Pisano, A.; Girolami, F.; Andolfo, A.; Magagnotti, C. Myosins and MyomiR Network in Patients with Obstructive Hypertrophic Cardiomyopathy. Biomedicines2022, 10, 2180.
  36. Daniels, M.J.; Fusi, L.; Semsarian, C.; Naidu, S.S. Myosin Modulation in Hypertrophic Cardiomyopathy and Systolic Heart Failure: Getting inside the Engine. Circulation2021, 144, 759–762.
  37. Van Driest, S.L.; Vasile, V.C.; Ommen, S.R.; Will, M.L.; Tajik, A.J.; Gersh, B.J.; Ackerman, M.J. Myosin Binding Protein C Mutations and Compound Heterozygosity in Hypertrophic Cardiomyopathy. J. Am. Coll. Cardiol.2004, 44, 1903–1910.
  38. Ahmed, A.M.; Jalil, A.T. Investigating the Protective Role of Rhodanese Enzyme Against Cyanide, the Cytotoxic by-Product of Amygdalin, in HDF and L929 Cell Lines. Lett. Drug Des. Discov.2022, 19, doi:https://dx.doi.org/10.2174/1570180819666220610101055.
  39. Masri, A.; Olivotto, I. Cardiac Myosin Inhibitors as a Novel Treatment Option for Obstructive Hypertrophic Cardiomyopathy: Addressing the Core of the Matter. J. Am. Heart Assoc. 2022, 11, e024656.