##plugins.themes.academic_pro.article.main##

Abstract

The development of highly effective and low-toxicity nonsteroidal anti-inflammatory drugs (NSAIDs) is one of the important challenges facing modern pharmacology. To overcome this problem, many studies have been conducted on compounds containing a five-membered heterocycle containing three nitrogen atoms. The pharmacodynamics of these compounds are mainly due to their anti-inflammatory effect. Therefore, it is important to synthesize new derivatives of 1,2,3-triazoles, to determine their structure and to look for substances with anti-inflammatory activity on their basis. For the first time, the corresponding derivatives of 4-(4-(exchangeable)-1H-1,2,3-triazole-1-yl)-benzoic acid were synthesized by cycloaddition of propargyl esters of saturated carboxylic acids and para-azidobenzoic acid in the presence of copper (I) iodide. The structure of the obtained substances was analyzed by IR, 1H NMR, and MS techniques. It is proved that under the action of the catalyst in the reaction, only 1,4-isomers are formed. Factors affecting the course of the reaction were identified.

Keywords

course inflammatory presence catalyst

##plugins.themes.academic_pro.article.details##

How to Cite
Fazliddin Kirgizov Bakhtiyarovich. (2024). Synthesis of 1,2,3-Triazole Derivatives Based on Propargyl Ester of a Saturated Single-Basic Carbonic Acid and ParaAzidobenzoic Acid. Texas Journal of Multidisciplinary Studies, 28, 4–11. Retrieved from https://zienjournals.com/index.php/tjm/article/view/4910

References

  1. Griess, J. P. Proc. R. Soc. Lond. 1864, 13, 375–384.
  2. . Ustinov, A. V.; Stepanova, I. A.; Dubnyakova, V. V.; Zasepin, T. S.;
  3. Nojevnikova, E. V.; Korshun V. A. Bioorganicheskaya Ximiya 2010, 4,
  4. -481.
  5. . Stefaniak, M.; Jasinski, M.; Urbaniak, K.; Romanski, J. Chemik. 2014, 68
  6. (7), 592-599.
  7. . Huisgen, R. Proc. Chem. Soc. 1961, 357-396.
  8. . Huisgen, R.; Pawda, A. (Editors) 1,3-Dipolar Cycloaddition Chemistry;
  9. John Wiley & Sons, Ltd.: New York, NY, USA, 1984.
  10. . Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40
  11. (11), 2004–2021.
  12. . Iha, R. K.; Wooley, K. L.; Nystrom, A. M.; Burke, D. J.; Kade, M. J.; Hawker,
  13. C. J. Chem. Rev. 2009, 109 (11), 5620–5686.
  14. . Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew.
  15. Chem. Int. Ed. 2002, 41 (14), 2596–2599.
  16. . Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67 (9),
  17. –3064.
  18. . Huisgen, R. Angew. Chem. Int. Ed. Engl. 1963, 2 (10), 565–598.
  19. . Liang, L.; Astruc, D. Coord. Chem. Rev. 2011, 255 (23–24), 2933–2945.
  20. . Astruc, D.; Liang, L.; Rapakousiou, A.; Ruiz, J. Acc. Chem. Res. 2011, 45
  21. (4), 630–640.
  22. . Wang, X.; Huang, B.; Liu, X.; Zhan, P. Drug Discovery Today 2016, 21
  23. (1), 118–132.