##plugins.themes.academic_pro.article.main##

Abstract

Intranuclear leakage of liquid protons was experimentally observed during the deceleration phase of the spiral-waved jet emitted from Kholmurad Khasanov's dynamic emitter. The gas stream from the nozzle forms supersonic spiral-type jets with spatially modulated extreme density, enhanced by shockwave structures. In these jets, phenomena such as over-compression and over-acceleration occur, creating a high-density energy field as the internal energy of the gas or liquid decreases. The resulting instability within the jet leads to explosions accompanied by intense ultraviolet light flares. These conditions are hypothesized to promote the synthesis of new elements and increase radionuclide activity, as verified by gamma-spectrometric analysis. In the experiments, elements such as carbon, calcium, silicon, and aluminum—previously absent in the original samples—were detected on solid surfaces after exposure to the jet

Keywords

Dynamic emitter Over-compression Ultraviolet irradiation explosion

##plugins.themes.academic_pro.article.details##

How to Cite
Kholmurad Khasanov, Elena Urusova, & Rashid Eshburiev. (2025). Synthesis Of Elements And Increased Radionuclide Activity Induced By Supersonic Spiral Jet . Texas Journal of Engineering and Technology, 40, 5–13. https://doi.org/10.62480/tjet.2025.vol40.pp5-13

References

  1. Bohr, N., Wheeler, J.A.: The mechanism of nuclear fission. Physical Review. 56, 426 (1939).
  2. Weizsäcker, C.F. v: Zur theorie der kernmassen. Zeitschrift für Physik. 96, 431 (1935).
  3. Itkis, M.G., Vardaci, E., Itkis, I.M., Knyazheva, G.N., Kozulin, E.M.: Fusion and fission of heavy and
  4. superheavy nuclei (experiment). Nuclear Physics A. 944, 204 (2015).
  5. Wilkins, B.D., Steinberg, E.P., Chasman, R.R.: Scission-point model of nuclear fission based on
  6. deformed-shell effects. Physical Review C. 14, 1832 (1976).
  7. Mayer, M.G.: On closed shells in nuclei. II. Physical Review. 75, 1969 (1949)
  8. Bethe, H.A., Bacher, R.F.: Nuclear physics A. Stationary states of nuclei. Reviews of Modern
  9. Physics. 8, 82 (1936).
  10. Lauritsen, Cc.C., Crane, uHR, Harper, W.W.: Artificial production of radioactive substances.
  11. Science. 79, 234 (1934).
  12. Foster, J.M., Wilde, B.H., Rosen, P.A., Perry, T.S., Fell, M., Edwards, M.J., Lasinski, B.F., Turner,
  13. R.E., Gittings, M.L.: Supersonic jet and shock interactions. Physics of Plasmas. 9, 2251 (2002).
  14. Hietala, H., Laitinen, T. V, Andréeová, K., Vainio, R., Vaivads, A., Palmroth, M., Pulkkinen, T.I.,
  15. Koskinen, H.E.J., Lucek, E.A., Rème, H.: Supermagnetosonic jets behind a collisionless quasiparallel
  16. shock. Physical Review Letters. 103, 245001 (2009).
  17. Khasanov, K., Petukhov, S. V: Dynamic emitter. PF patent. (1996).
  18. Khasanov, K.: Bi-Spiral Switched Supersonic Jet Flow Escaping from a Circular Nozzle: Interaction
  19. with Metal and Polymer Screens, Infrared Radiation Phenomenon. In: International Conference:
  20. Fluxes and Structures in Fluids. Physics of Geospheres. , Moscow (2009).
  21. Khasanov, K.: Visualization of super-compressibility in supersonic spiral-twisted jets. Physics Letters
  22. A. 376, 748 (2012).
  23. Khasanov, K.: Super-Compressibility Phenomenon. Journal of Modern Physics. 4, 200 (2013).
  24. McNamara III, W.B., Didenko, Y.T., Suslick, K.S.: Sonoluminescence temperatures during multibubble cavitation. nature. 401, 772 (1999).
  25. Mohseni, K., Colonius, T., Freund, J.B.: An evaluation of linear instability waves as sources of sound
  26. in a supersonic turbulent jet. Physics of fluids. 14, 3593 (2002).
  27. Savin, D.W., Brickhouse, N.S., Cowan, J.J., Drake, R.P., Federman, S.R., Ferland, G.J., Frank, A.,
  28. Gudipati, M.S., Haxton, W.C., Herbst, E.: The impact of recent advances in laboratory astrophysics
  29. on our understanding of the cosmos. Reports on Progress in Physics. 75, 36901 (2012).
  30. Nagle, J.L., Adare, A., Beckman, S., Koblesky, T., Koop, J.O., McGlinchey, D., Romatschke, P.,
  31. Carlson, J., Lynn, J.E., McCumber, M.: Exploiting intrinsic triangular geometry in relativistic he 3+
  32. au collisions to disentangle medium properties. Physical Review Letters. 113, 112301 (2014).
  33. Huang, S., Collaboration, P.: Measurements of elliptic and triangular flow in high-multiplicity 3He+
  34. Au collisions at sNN= 200 GeV. Nuclear Physics A. 956, 761 (2016).
  35. Aad, G., Abbott, B., Abbott, D.C., Abed Abud, A., Abeling, K., Abhayasinghe, D.K., Abidi, S.H.,
  36. AbouZeid, O.S., Abraham, N.L., Abramowicz, H.: Two-particle azimuthal correlations in
  37. photonuclear ultraperipheral Pb+ Pb collisions at 5.02 TeV with ATLAS. Physical Review C. 104,
  38. (2021).
  39. Khasanov, K.: Radiation of bi-spiral switched supersonic jet flow escaping from an annular nozzle.
  40. Fluxes and Structures in Fluids. Physics of Geospheres–2009 (Abstracts), Moscow. (2010).
  41. Khasanov, K.: PHENOMENA TAKING PLACE AT THE ATOMIC LEVEL UNDER CERTAIN
  42. PERTURBATIONS. In: Abstracts of 56th International Symposium on Molecular Spectroscopy. Ohio
  43. State University, Columbus (2001).
  44. Joliot-Curie, I., Joliot, F.: Artificial production of radioactive elements. Nobel Lectures in Chemistry
  45. (1922–1941). 2, 366 (1935).
  46. Fermi, E., Amaldi, E., D’Agostino, O., Rasetti, F., Segrè, E.: Artificial radioactivity produced by
  47. neutron bombardment. Proceedings of the Royal Society of London. Series A, Containing Papers of a
  48. Mathematical and Physical Character. 146, 483 (1934).