##plugins.themes.academic_pro.article.main##

Abstract

The World Health Organization (WHO) has issued a warning that antibiotic resistance is a problem that must be effectively addressed and controlled that it poses serious challenges to the existing healthcare system. Pan-drug-resistant (PDR) infections are caused by microbes that have evolved methods to withstand all forms of antimicrobial treatment, such as those that impede drug absorption, alter drug targets, inactivate drugs, or utilize efflux pumps. The importance of treating this sort of medication resistance is underscored by the fact that the development of new therapies to treat it pushes clinicians to take action. Only a few numbers of antibiotics, particularly when used in combination, are successful against PDR Gram-negative bacteria such Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli. Treatment of PDR A. baumannii is best accomplished using tigecycline in collaboration with colestimethate, imipenem, or amikacin. The use of β-lactamase antagonists, including ceftolozanetazobactam or imipenem-cilastatin-relebactam, is the greatest effective method of treating PDR P. aeruginosa. Nitrofurantoin, fosfomycin, and pivmecillinam appear to be the best successful medication for the treatment of PDR E. coli, whereas tigecycline and colistin have been used to treat PDR K. pneumoniae throughout the last several decades. Despite the fact that these medications fight PDR infections quite well, there is a pressing need for the development of new substances and techniques of countering resistance since antibiotic resistance is increasing every day in microbial species throughout the globe.

Keywords

Antibiotic resistance antimicrobial drugs

##plugins.themes.academic_pro.article.details##

How to Cite
Khilood Hamdan Fahad, Balsam Miri Mizher Al-Muhana, & Jenen Jenan Nadhim Sadiq. (2023). Beneficial antimicrobial treatment options for pan-drugresistant bacterial species. Texas Journal of Agriculture and Biological Sciences, 14, 45–51. Retrieved from https://zienjournals.com/index.php/tjabs/article/view/3581

References

  1. 1. Catalano A, Iacopetta D, Ceramella J, Scumaci D, Giuzio F, Saturnino C, et al. Multidrug Resistance (MDR): A Widespread Phenomenon in Pharmacological Therapies. Molecules [Internet]. 2022 Feb 1 [cited 2022 Dec 25];27(3):616. Available from: /pmc/articles/PMC8839222/
  2. 2. Ozma MA, Khodadadi E, Rezaee MA, Asgharzadeh M, Aghazadeh M, Zeinalzadeh E, et al. Bacterial Proteomics and its Application in Pathogenesis Studies. Curr Pharm Biotechnol [Internet]. 2022 Sep 10 [cited 2022 Dec 25];23(10):1245–56. Available from: https://pubmed.ncbi.nlm.nih.gov/34503411/
  3. 3. Pillay S, Steingart KR, Davies GR, Chaplin M, De Vos M, Schumacher SG, et al. Xpert MTB/XDR for detection of pulmonary tuberculosis and resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin. Cochrane Database Syst Rev [Internet]. 2022 May 18 [cited 2022 Dec 25];2022(5):CD014841. Available from: /pmc/articles/PMC9115865/
  4. 4. Ozma MA, Rashedi J, Poor BM, Vegari A, Asgharzadeh V, Kafil HS, et al. Tuberculosis and Diabetes Mellitus in Northwest of Iran. Infect Disord Drug Targets [Internet]. 2020 Jul 19 [cited 2022 Dec 25];20(5):667–71. Available from: https://pubmed.ncbi.nlm.nih.gov/31322073/
  5. 5. Karakonstantis S, Kritsotakis EI, Gikas A. Pandrug-resistant Gram-negative bacteria: a systematic review of current epidemiology, prognosis and treatment options. J Antimicrob Chemother [Internet]. 2020 Feb 1 [cited 2022 Dec 25];75(2):271–82. Available from: https://pubmed.ncbi.nlm.nih.gov/31586417/
  6. 6. Ferry T, Kolenda C, Laurent F, Leboucher G, Merabischvilli M, Djebara S, et al. Personalized bacteriophage therapy to treat pandrug-resistant spinal Pseudomonas aeruginosa infection. Nat Commun [Internet]. 2022 Dec 1 [cited 2022 Dec 25];13(1):4239. Available from: /pmc/articles/PMC9306240/
  7. 7. Karakonstantis S, Ioannou P, Kofteridis DD. In search for a synergistic combination against pandrug-resistant A. baumannii; methodological considerations. Infection [Internet]. 2022 Jun 1 [cited 2022 Dec 25];50(3):569–81. Available from: https://pubmed.ncbi.nlm.nih.gov/34982411/
  8. 8. Karakonstantis S, Ioannou P, Samonis G, Kofteridis DP. Systematic review of antimicrobial combination options for pandrug-resistant acinetobacter baumannii. Antibiotics [Internet]. 2021 Nov 1 [cited 2022 Dec 25];10(11):1344. Available from: /pmc/articles/PMC8615225/
  9. 9. Bassetti M, Righi E, Vena A, Graziano E, Russo A, Peghin M. Risk stratification and treatment of ICU-acquired pneumonia caused by multidrug- resistant/extensively drug-resistant/pandrug-resistant bacteria. Curr Opin Crit Care [Internet]. 2018 [cited 2022 Dec 25];24(5):385–93. Available from: https://pubmed.ncbi.nlm.nih.gov/30156569/
  10. 10. Addis T, Araya S, Desta K. Occurrence of Multiple, Extensive and Pan Drug-Resistant Pseudomonas aeruginosa and Carbapenemase Production from Presumptive Isolates Stored in a Biobank at Ethiopian Public Health Institute. Infect Drug Resist [Internet]. 2021 [cited 2022 Dec 25];14(9):3609–18. Available from: /pmc/articles/PMC8427834/
  11. 11. Morehead MS, Scarbrough C. Emergence of Global Antibiotic Resistance. Prim Care [Internet]. 2018 Sep 1 [cited 2022 Dec 25];45(3):467–84. Available from: https://pubmed.ncbi.nlm.nih.gov/30115335/
  12. 12. Hwang AY, Gums JG. The emergence and evolution of antimicrobial resistance: Impact on a global scale. Bioorg Med Chem [Internet]. 2016 [cited 2022 Dec 25];24(24):6440–5. Available from: https://pubmed.ncbi.nlm.nih.gov/27117692/
  13. 13. Francine P. Systems Biology: New Insight into Antibiotic Resistance. Microorg 2022, Vol 10, Page 2362 [Internet]. 2022 Nov 29 [cited 2022 Dec 25];10(12):2362. Available from: https://www.mdpi.com/2076-2607/10/12/2362/htm
  14. 14. Ozma MA, Khodadadi E, Pakdel F, Kamounah FS, Yousefi M, Yousefi B, et al. Baicalin, a natural antimicrobial and anti-biofilm agent. J Herb Med. 2021 Jun 1;27(2):100432.
  15. 15. Vaez H, Salehi-Abargouei A, Ghalehnoo ZR, Khademi F. Multidrug Resistant Pseudomonas aeruginosa in Iran: A Systematic Review and Metaanalysis. J Glob Infect Dis [Internet]. 2018 Oct 1 [cited 2022 Dec 25];10(4):212–7. Available from: /pmc/articles/PMC6276320/
  16. 16. Raman G, Avendano EE, Chan J, Merchant S, Puzniak L. Risk factors for hospitalized patients with resistant or multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrob Resist Infect Control [Internet]. 2018 Jul 4 [cited 2022 Dec 25];7(1):79. Available from: /pmc/articles/PMC6032536/
  17. 17. Rasamiravaka T, El Jaziri M. Quorum-Sensing Mechanisms and Bacterial Response to Antibiotics in P. aeruginosa. Curr Microbiol [Internet]. 2016 Nov 1 [cited 2022 Dec 25];73(5):747–53. Available from: https://pubmed.ncbi.nlm.nih.gov/27449213/
  18. 18. Ciofu O, Tolker-Nielsen T. Tolerance and Resistance of Pseudomonas aeruginosa Biofilms to Antimicrobial Agents—How P. aeruginosa Can Escape Antibiotics. Front Microbiol [Internet]. 2019 [cited 2022 Dec 25];10(5):913. Available from: /pmc/articles/PMC6509751/
  19. 19. Bassetti M, Castaldo N, Cattelan A, Mussini C, Righi E, Tascini C, et al. Ceftolozane/tazobactam for the treatment of serious Pseudomonas aeruginosa infections: a multicentre nationwide clinical experience. Int J Antimicrob Agents [Internet]. 2019 Apr 1 [cited 2022 Dec 25];53(4):408–15. Available from: https://pubmed.ncbi.nlm.nih.gov/30415002/
  20. 20. Gorityala BK, Guchhait G, Goswami S, Fernando DM, Kumar A, Zhanel GG, et al. Hybrid Antibiotic Overcomes Resistance in P. aeruginosa by Enhancing Outer Membrane Penetration and Reducing Efflux. J Med Chem [Internet]. 2016 Sep 22 [cited 2022 Dec 25];59(18):8441–55. Available from: https://pubmed.ncbi.nlm.nih.gov/27524179/
  21. 21. Zheng X, Cao Q, Cao Q, Mao F, Li X, Zhu J, et al. Discovery of synergistic activity of fluoroquinolones in combination with antimicrobial peptides against clinical polymyxin-resistant Pseudomonas aeruginosa DK2. Chinese Chem Lett. 2020 Feb 1;31(2):413–7.
  22. 22. Ulloa ER, Sakoulas G. Azithromycin: An Underappreciated Quinolone-Sparing Oral Treatment for Pseudomonas aeruginosa Infections. Antibiotics [Internet]. 2022 Apr 1 [cited 2022 Dec 25];11(4):515. Available from: /pmc/articles/PMC9024921/
  23. 23. Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aerug. Clin Infect Dis [Internet]. 2021 Apr 8 [cited 2022 Dec 25];72(7):e169–83. Available from: https://pubmed.ncbi.nlm.nih.gov/33106864/
  24. 24. Samad T, Co JY, Witten J, Ribbeck K. Mucus and Mucin Environments Reduce the Efficacy of Polymyxin and Fluoroquinolone Antibiotics against Pseudomonas aeruginosa. ACS Biomater Sci Eng [Internet]. 2019 Mar 11 [cited 2022 Dec 25];5(3):1189–94. Available from: /pmc/articles/PMC9267971/
  25. 25. von Silva-Tarouca MSE, Wolf G, Mueller RS. Determination of minimum inhibitory concentrations for silver sulfadiazine and other topical antimicrobial agents against strains of Pseudomonas aeruginosa isolated from canine otitis externa. Vet Dermatol [Internet]. 2019 Apr 1 [cited 2022 Dec 25];30(2):145-e42. Available from: https://pubmed.ncbi.nlm.nih.gov/30663140/
  26. 26. Campos AC, Albiero J, Ecker AB, Kuroda CM, Meirelles LEF, Polato A, et al. Outbreak of Klebsiella pneumoniae carbapenemase-producing K pneumoniae: A systematic review. Am J Infect Control [Internet]. 2016 Nov 1 [cited 2022 Dec 25];44(11):1374–80. Available from: https://pubmed.ncbi.nlm.nih.gov/27156198/
  27. 27. Russo TA, Olson R, Fang CT, Stoesser N, Miller M, MacDonald U, et al. Identification of Biomarkers for Differentiation of Hypervirulent Klebsiella pneumoniae from Classical K. pneumoniae. J Clin Microbiol [Internet]. 2018 Sep 1 [cited 2022 Dec 25];56(9):776–94. Available from: /pmc/articles/PMC6113484/
  28. 28. Ozma MA, Abbasi A, Asgharzadeh M, Pagliano P, Guarino A, Köse S, et al. Antibiotic therapy for pan-drug-resistant infections. Le Infez Med [Internet]. 2022 [cited 2022 Dec 25];30(4):525–31. Available from: /pmc/articles/PMC9715010/
  29. 29. Alghoribi MF, Alqurashi M, Okdah L, Alalwan B, AlHebaishi YS, Almalki A, et al. Successful treatment of infective endocarditis due to pandrug-resistant Klebsiella pneumoniae with ceftazidime-avibactam and aztreonam. Sci Rep [Internet]. 2021 Dec 1 [cited 2022 Dec 25];11(1):9684. Available from: /pmc/articles/PMC8102575/
  30. 30. Zhang Y, Guo LY, Song WQ, Wang Y, Dong F, Liu G. Risk factors for carbapenem-resistant K. pneumoniae bloodstream infection and predictors of mortality in Chinese paediatric patients. BMC Infect Dis [Internet]. 2018 May 31 [cited 2022 Dec 25];18(1):248. Available from: /pmc/articles/PMC5984460/
  31. 31. Xu J, Zhao Z, Ge Y, He F. Rapid Emergence of a Pandrug-Resistant Klebsiella pneumoniae ST11 Isolate in an Inpatient in a Teaching Hospital in China After Treatment with Multiple Broad-Spectrum Antibiotics. Infect Drug Resist [Internet]. 2020 [cited 2022 Dec 25];13(3):799–804. Available from: /pmc/articles/PMC7071855/
  32. 32. El-Badawy MF, El-Far SW, Althobaiti SS, Abou-Elazm FI, Shohayeb MM. The First Egyptian Report Showing the Co-Existence of blaNDM-25, blaOXA-23, blaOXA-181, and blaGES-1 Among Carbapenem-Resistant K. pneumoniae Clinical Isolates Genotyped by BOX-PCR. Infect Drug Resist [Internet]. 2020 [cited 2022 Dec 25];13(4):1237–50. Available from: /pmc/articles/PMC7196799/
  33. 33. Nkansa-Gyamfi NA, Kazibwe J, Traore DAK, Nji E. Prevalence of multidrug-, extensive drug-, and pandrug-resistant commensal Escherichia coli isolated from healthy humans in community settings in low- and middle-income countries: a systematic review and meta-analysis. Glob Health Action [Internet]. 2019 Dec 13 [cited 2022 Dec 25];12(Suppl):1815272. Available from: /pmc/articles/PMC7782630/
  34. 34. Kim J, Hwang BK, Choi H, Wang Y, Choi SH, Ryu S, et al. Characterization of mcr-1-Harboring Plasmids from Pan Drug-Resistant Escherichia coli Strains Isolated from Retail Raw Chicken in South Korea. Microorganisms [Internet]. 2019 Sep 1 [cited 2022 Dec 25];7(9):344. Available from: /pmc/articles/PMC6780365/
  35. 35. Feuerstein A, Scuda N, Klose C, Hoffmann A, Melchner A, Boll K, et al. Antimicrobial resistance, serologic and molecular characterization of E. coli isolated from calves with severe or fatal enteritis in Bavaria, Germany. Antibiotics [Internet]. 2022 Jan 1 [cited 2022 Dec 25];11(1):23. Available from: /pmc/articles/PMC8772957/
  36. 36. Benklaouz MB, Aggad H, Benameur Q. Resistance to multiple first-line antibiotics among Escherichia coli from poultry in Western Algeria. Vet World [Internet]. 2020 [cited 2022 Dec 25];13(2):290–5. Available from: /pmc/articles/PMC7096288/
  37. 37. Page MG, Bush K. Discovery and development of new antibacterial agents targeting Gram-negative bacteria in the era of pandrug resistance: is the future promising? Curr Opin Pharmacol [Internet]. 2014 [cited 2022 Dec 25];18(10):91–7. Available from: https://pubmed.ncbi.nlm.nih.gov/25277839/
  38. 38. Falagas ME, Mavroudis AD, Vardakas KZ. The antibiotic pipeline for multi-drug resistant gram negative bacteria: what can we expect? Expert Rev Anti Infect Ther [Internet]. 2016 Aug 2 [cited 2022 Dec 25];14(8):747–63. Available from: https://pubmed.ncbi.nlm.nih.gov/27400643/
  39. 39. Cherubini S, Perilli M, Segatore B, Fazii P, Parruti G, Frattari A, et al. Whole-Genome Sequencing of ST2 A. baumannii Causing Bloodstream Infections in COVID-19 Patients. Antibiotics [Internet]. 2022 Jul 1 [cited 2022 Dec 25];11(7):955. Available from: /pmc/articles/PMC9311945/
  40. 40. Ghaffoori Kanaan MH, Khashan HT. Molecular typing, virulence traits and risk factors of pandrug-resistant Acinetobacter baumannii spread in intensive care unit centers of Baghdad city, Iraq. Rev Res Med Microbiol. 2022 Jan 1;33(1):51–5.
  41. 41. Fragkou PC, Poulakou G, Blizou A, Blizou M, Rapti V, Karageorgopoulos DE, et al. The Role of Minocycline in the Treatment of Nosocomial Infections Caused by Multidrug, Extensively Drug and Pandrug Resistant Acinetobacter baumannii: A Systematic Review of Clinical Evidence. Microorganisms [Internet]. 2019 Jun 1 [cited 2022 Dec 25];7(6):159. Available from: /pmc/articles/PMC6617316/
  42. 42. Karakonstantis S. A systematic review of implications, mechanisms, and stability of in vivo emergent resistance to colistin and tigecycline in Acinetobacter baumannii. J Chemother [Internet]. 2021 [cited 2022 Dec 25];33(1):1–11. Available from: https://pubmed.ncbi.nlm.nih.gov/32677578/
  43. 43. Deng ZW, Wang J, Qiu CF, Yang Y, Shi ZH, Zhou JL. A case report of intraventricular and intrathecal tigecycline infusions for an extensively drug-resistant intracranial Acinetobacter baumannii infection. Medicine (Baltimore) [Internet]. 2019 Apr 1 [cited 2022 Dec 25];98(15):e15139. Available from: /pmc/articles/PMC6485835/