Effective cleaning necessitates the reduction or elimination of toxicity, the use of plants to remove or detoxify environmental pollutants, or the immobilization of the pollutants in the growth matrix in the soil through biological and biological nature, chemical, or physical activities or processes somewhere in the city of Baghdad, the current situation. Because minerals cannot disintegrate and element concentrations are high, it takes a while for the mechanisms to reduce the percentage of mineral contamination in soils (Cd, Cr, Fe ), to determine the association between plants using an average of data from plants that varied from one another in terms of their capacity to absorb lead and the concentration in three key plant types. Eucalyptus camaldulensis, Cupressus dupreziana, (0.033, 0.018)ppm. The elements may dissolve in water, which could lead to their migration into the soil and up the food chain. Many industrial activities, such as mining, mineral processing, and chemical production, result in an increase in the concentration of nonessential minerals in the water levels in the areas surrounding industrial sites.


Indication Leaf plants Soil Elements Pollution


How to Cite
Aqeel Lami, Shahla Hussien Hano, Reyam Naji Ajmi, & Nadia Kamil Bashar. (2023). Leaf Plants ability to absorb heavy metals (Cd, Cr, Fe) from naturally polluted soil. Texas Journal of Agriculture and Biological Sciences, 14, 39–44. Retrieved from https://zienjournals.com/index.php/tjabs/article/view/3520


  1. Allén, A. La interfase periurbana como escenario de cambio y acción hacia la sustentabilidad del desarrollo. Cuad. CENDES2003, 20, 7–21. Available online: http://ve.scielo.org/scielo.php?pid=S1012-25082003000200002&script=sci_arttext (accessed on 4 November 2021).
  2. APHA, Standard methods for the examination water and wastewater, 18th Ed., American Public Health Association, APHA Press, Washington D.C., 1998.
  3. Baden, B.M.; Coursey, D.L. The locality of waste sites within the city of Chicago: A demographic, social, and economic analysis.
  4. Guney, M; Onay, T. T. and Copty, N. K. (2010). Impact of overland traffic on heavy metal levels in highway dust and soils of Istanbul, Turkey.Environ. Monit. Assess. 164:101–111.
  5. Canning, L.; Szmigin, I. Death and disposal: The universal, environmental dilemma. J. Mark. Manag. 2010, 26, 1129–1142.
  6. Da Cruz, N.J.T.; Lezana, Á.G.R.; Freire dos Santos, P.D.C.; Santana Pinto, I.M.B.; Zancan, C.; Silva de Souza, G.H. Environmental impacts caused by cemeteries and crematoria, new funeral technologies, and preferences of the Northeastern and Southern Brazilian population as for the funeral process. Environ. Sci. Pollut. Res. 2017, 24, 24121–24134. [CrossRef] [PubMed].
  7. Kafoor, S. and Kasra, A. (2014). Heavy Metals Concentration in Surface Soils of Some Community Parks of the Erbil City. Zanco Journal of Pure and Applied Sciences. Vol.26, No.2, pp. 31-38.
  8. Fistola, R. The unsustainable city. Urban entropy and social capital: The needing of a new urban planning. Procedia Eng. 2011, 21,976–984. [CrossRef].
  9. Guayasamín Vergara, J.D. Establecimiento De Índices Empíricos Ambientales Para Manejo De Cadáveres Humanos: Entierro Y Cremación En Ecuador. Master’s Thesis, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador, 2021.
  10. Hala Mundhir Fattah؛ Frank Caso (2009)، A brief history of Iraq، Infobase Publishing. ISBN 0816057672, 9780816057672 Length 318 pages, pp 69.
  11. Larkin, M.T. An Analysis of Land Use Planning Policies for Cemeteries in Ontario. Master’s Thesis, Ryerson University, Toronto,ON, Canada, 2011.
  12. Nguyen, T.; Nguyen, L. Groundwater pollution by longstanding cemetery and solutions for urban cemetery planning in Ho Chi Minh City—From reality to solutions. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 193, p. 02008. [CrossRef].
  13. Nguyen, X.L.; Chou, T.Y.; Hoang, T.V.; Fang, Y.M.; Nguyen, Q.H. Research on Optimal Cemetery Location Selection using Approach of Fuzzy Set Theory and Analytic Hierarchy Process in Environment of Geographic Information System: A Case Study in Hung Ha District, pages 1–9 Thai Binh province, Vietnam. Int. J. Res. Innov. Earth Sci. 2019, 6, 20–28.
  14. Ni¸tˇa, M.R.; Iojˇa, I.C.; Rozylowicz, L.; Onose, D.A.; Tudor, A.C. Land use consequences of the evolution of cemeteries in the Bucharest Metropolitan Area. J. Environ. Plan. Manag. 2014, 57, 1066–1082. [CrossRef] .
  15. Peluso, F.; Vives, L.; Varni, M.; Cazenave, G.; González Castelain, J.; Usunoff, E. Evaluación preventiva espacial del riesgo sanitario por la instalación de un cementerio parque. GeoFocus. Rev. Int. De Cienc. Y Tecnol. De La Inf. Geográfica 2006, 6, 1–14.
  16. Reyam Naji Ajmi b. Estimation Free Cyanide on the Sites Exposed of Organisms Mortality in Sura River /November 2018. Journal of Global Pharma Technology|2019| Vol. 11| Issue 03 |100-105.
  17. Scalenghe, R.; Pantani, O.L. Connecting existing cemeteries saving good soils (for livings). Sustainability 2020, 12, 93. [CrossRef].
  18. World Health Organization, Ammonia in drinking water-background document for development of WHO guideline for drinking water quality, 4th Ed., WHO Series, Geneva, 2013.
  19. World Health Organization, Ammonia in drinking water-background document for development of WHO guideline for drinking water quality, 4th Ed., WHO Series, Geneva, 2012.
  20. Fadhil, B.S., Ajmi, R.N.Scanning electron microscope (sem) to examine characteristics plants and soil evidence in Baghdad city, IraqPlant Archives, 2019, 19, pp. 927–930.
  21. Saeed, M.S., Ajmi, R.N. Polycyclic aromatic hydrocarbons (PAHs) as biomarkers in the controlling headquarters, Almuthannamilitary Airport, Baghdad, Iraq Plant Archives, 2020, 20(1), pp. 2860–2864