##plugins.themes.academic_pro.article.main##

Abstract

Infection of the urinary tract is one of the more common infections in the people of the world, which is more common in women due to the anatomical structure of the woman's body. The main cause of this infection is uropathogenic E. coli, followed by Klebsiella pneumoniae. This disease is controlled and treated by antibiotics, but one of the most important concerns in today's world is the spread of antibiotic resistance in different strains of bacteria. This resistance to antibiotics is caused by specific genes that increase the number of these identified genes every day. This study aims to find the frequency of three coding genes related to p fimbriae, namely papA, papC, and papG, from E. coli strains extracted from patients with urinary tract infections. Also, in this research, by conducting tests related to the detection of the antimicrobial resistance of the extracted strains and using statistical analysis, an attempt has been made to find a significant relationship between the presence or absence of a gene and resistance to antibacterials. At first, 110 urine samples were collected from patients with UTI in the Dhi Qar province of Iraq. In this research, bacterial culture methods in McConkey agar and advanced biochemical tests were used for primary confirmation of E. coli contamination, and Vitek2 and API E20 systems were used for secondary confirmation of bacterial contamination in suspected samples. Finally, the result of these tests was that all 110 samples were infected with E. coli. Then, samples resistant to the antibiotics Ampicillin, Tetracycline, Ciprofloxacin, Nitrofurantoin, and Cotrimoxazole, respectively, were detected by culturing in MuellerHinton agar medium and disc diffusion using the CLSI 2021 protocol. 36.36, 24.54, 29.09, 2.72, and 20% of the samples were resistant to these antibiotics, respectively. PCR was used to amplify gene fragments, and agarose gel electrophoresis was used to determine the presence of genes. The result was that the percentages of papG, papC, and papA genes were 61.81, 38.18, and 28.18, respectively. Finally, by performing a chisquare test in SPSS software, it was found that there is a significant relationship between the presence or absence of papA and papC genes with ampicillin and a significant relationship between papG and cotrimoxazole. These findings and the findings of other researchers can help us choose the right treatment and design new treatments by determining the antibiotic resistance factor

Keywords

urinary tract infection uropathogenic E. coli papA papC papG

##plugins.themes.academic_pro.article.details##

How to Cite
Sura Mohammed Mahdi, Halah Abdulkareem Yahya, Murtadha kadhim Yasir, Raheem Nayyef Naser, & Khashaa Abdul Khadhem Jaber. (2023). Investigation of papA, papC, and papG virulence genes revealed their association with antimicrobial resistance among uropathogenic Escherichia coli strains isolated from patients in Thi-Qar province, Iraq. Texas Journal of Medical Science, 25, 1–21. https://doi.org/10.62480/tjms.2023.vol25.pp1-21

References

  1. K. Gupta, L. Grigoryan, B. Trautner, (2017) Urinary Tract Infection, Annals of Internal Medicine. 167 ITC49–ITC64. DOI: 10.7326/AITC201710030.
  2. A. Masajtis-Zagajewska, M. Nowicki, (2017) New markers of urinary tract infection, Clinica Chimica Acta. 471 286–291. DOI: 10.1016/J.CCA.2017.06.003.
  3. L.K. McLellan, D.A. Hunstad, (2016) Urinary Tract Infection: Pathogenesis and Outlook, Trends in Molecular Medicine. 22 946–957. DOI: 10.1016/J.MOLMED.2016.09.003.
  4. K. Gupta, L. Grigoryan, B. Trautner, (2017) Urinary Tract Infection, Annals of Internal Medicine. 167 ITC49–ITC64. DOI: 10.7326/AITC201710030.
  5. A. Masajtis-Zagajewska, M. Nowicki, (2017) New markers of urinary tract infection, Clinica Chimica Acta. 471 286–291. DOI: 10.1016/J.CCA.2017.06.003.
  6. (N.d.) Urinary tract infection: Overview | Symptoms | Medicover,. https://www.medicoverhospitals.in/diseases/urinary-tract-infection (accessed September 24, 2022).
  7. J.B. Kaper, J.P. Nataro, H.L.T. Mobley, (2004) Pathogenic Escherichia coli, Nature Reviews Microbiology 2004 2:2. 2 123–140. DOI: 10.1038/nrmicro818.
  8. S.H. Yoon, H. Jeong, S.K. Kwon, J.F. Kim, (2009) Genomics, biological features, and biotechnological applications of Escherichia coli B: Is B for better?, Systems Biology and Biotechnology of Escherichia Coli. 1–17. DOI: 10.1007/978-1-4020-9394-4_1/COVER.
  9. (N.d.) E. coli | NIH: National Institute of Allergy and Infectious Diseases,. https://www.niaid.nih.gov/diseases-conditions/e-coli (accessed September 24, 2022).
  10. N. Allocati, M. Masulli, M.F. Alexeyev, C. di Ilio, (2013) Escherichia coli in Europe: An Overview, International Journal of Environmental Research and Public Health 2013, Vol. 10, Pages 6235-6254. 10 6235–6254. DOI: 10.3390/IJERPH10126235.
  11. M.R. Asadi Karam, M. Habibi, S. Bouzari, (2019) Urinary tract infection: Pathogenicity, antibiotic resistance and development of effective vaccines against Uropathogenic Escherichia coli, Molecular Immunology. 108 56–67. DOI: 10.1016/J.MOLIMM.2019.02.007.
  12. F.M.E. Wagenlehner, T.E. Bjerklund Johansen, T. Cai, B. Koves, J. Kranz, A. Pilatz, Z. Tandogdu, (2020) Epidemiology, definition and treatment of complicated urinary tract infections, Nature Reviews. Urology. 17 586–600. DOI: 10.1038/S41585-020-0362-4.
  13. P. Lüthje, A. Brauner, (2014) Virulence Factors of Uropathogenic E. coli and Their Interaction with the Host, Advances in Microbial Physiology. 65 337–372. DOI: 10.1016/BS.AMPBS.2014.08.006.
  14. [A. Aleksandrowicz, M.M. Khan, K. Sidorczuk, M. Noszka, R. Kolenda, (2021) Whatever makes them stick – Adhesins of avian pathogenic Escherichia coli, Veterinary Microbiology. 257 109095. DOI: 10.1016/J.VETMIC.2021.109095.
  15. S. Subashchandrabose, H.L.T. Mobley, (2015) Virulence and Fitness Determinants of Uropathogenic Escherichia coli, Microbiology Spectrum. 3. DOI: 10.1128/MICROBIOLSPEC.UTI-0015-2012.
  16. J. Mainil, (2013) Escherichia coli virulence factors, Veterinary Immunology and Immunopathology. 152 2–12. DOI: 10.1016/J.VETIMM.2012.09.032.
  17. M. Zhou, Y. Yang, P. Chen, H. Hu, P.R. Hardwidge, G. Zhu, (2015) More than a locomotive organelle: flagella in Escherichia coli, Applied Microbiology and Biotechnology 2015 99:21. 99 8883–8890. DOI: 10.1007/S00253-015-6946-X.
  18. L.A. Pratt, R. Kolter, (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili, Molecular Microbiology. 30 285–293. DOI: 10.1046/J.1365-2958.1998.01061.X.
  19. J. Sarowska, B. Futoma-Koloch, A. Jama-Kmiecik, M. Frej-Madrzak, M. Ksiazczyk, G. Bugla-Ploskonska, I. Choroszy-Krol, (2019) Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: recent reports, Gut Pathogens. 11. DOI: 10.1186/S13099-019-0290-0.
  20. M. Bonten, J.R. Johnson, A.H.J. van den Biggelaar, L. Georgalis, J. Geurtsen, P.I. de Palacios, S. Gravenstein, T. Verstraeten, P. Hermans, J.T. Poolman, (2021) Epidemiology of Escherichia coli Bacteremia: A Systematic Literature Review, Clinical Infectious Diseases. 72 1211–1219. DOI: 10.1093/CID/CIAA210.
  21. J.T. Poolman, A.S. Anderson, (2018) Escherichia coli and Staphylococcus aureus: leading bacterial pathogens of healthcare associated infections and bacteremia in older-age populations, Expert Review of Vaccines. 17 607–618. DOI: 10.1080/14760584.2018.1488590.
  22. M. Nagao, (2013) A multicentre analysis of epidemiology of the nosocomial bloodstream infections in Japanese university hospitals, Clinical Microbiology and Infection. 19 852–858. DOI: 10.1111/1469-0691.12083.
  23. B. Foxman, (2010) The epidemiology of urinary tract infection, Nature Reviews Urology 2010 7:12. 7 653–660. DOI: 10.1038/nrurol.2010.190.
  24. G. Frankel, E.Z. Ron, (n.d.) Escherichia coli, a versatile pathogen, 242.
  25. Y. Paitan, (2018) Current trends in antimicrobial resistance of escherichia coli, Current Topics in Microbiology and Immunology. 416 181–211. DOI: 10.1007/82_2018_110/COVER.
  26. G. Sharma, S. Sharma, P. Sharma, D. Chandola, S. Dang, S. Gupta, R. Gabrani, (2016) Escherichia coli biofilm: development and therapeutic strategies, Journal of Applied Microbiology. 121 309–319. DOI: 10.1111/JAM.13078.
  27. A.W.H. Lo, K. van de Water, P.J. Gane, A.W.E. Chan, D. Steadman, K. Stevens, D.L. Selwood, G. Waksman, H. Remaut, (2014) Suppression of type 1 pilus assembly in uropathogenic Escherichia coli by chemical inhibition of subunit polymerization, Journal of Antimicrobial Chemotherapy. 69 1017–1026. DOI: 10.1093/JAC/DKT467.
  28. A. Chibeu, E.J. Lingohr, L. Masson, A. Manges, J. Harel, H.W. Ackermann, A.M. Kropinski, P. Boerlin, (2012) Bacteriophages with the Ability to Degrade Uropathogenic Escherichia Coli Biofilms, Viruses 2012, Vol. 4, Pages 471-487. 4 471–487. DOI: 10.3390/V4040471.
  29. J. Monte, A.C. Abreu, A. Borges, L.C. Simões, M. Simões, (2014) Antimicrobial Activity of Selected Phytochemicals against Escherichia coli and Staphylococcus aureus and Their Biofilms, Pathogens 2014, Vol. 3, Pages 473-498. 3 473–498. DOI: 10.3390/PATHOGENS3020473.
  30. B. Thankappan, S. Jeyarajan, S. Hiroaki, K. Anbarasu, K. Natarajaseenivasan, N. Fujii, (2013) Antimicrobial and Antibiofilm Activity of Designed and Synthesized Antimicrobial Peptide, KABT-AMP, Applied Biochemistry and Biotechnology 2013 170:5. 170 1184–1193. DOI: 10.1007/S12010-013-0258-3.
  31. W. Salem, D.R. Leitner, F.G. Zingl, G. Schratter, R. Prassl, W. Goessler, J. Reidl, S. Schild, (2015) Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli, International Journal of Medical Microbiology. 305 85–95. DOI: 10.1016/J.IJMM.2014.11.005.
  32. M.C. Lane, H.L.T. Mobley, (2007) Role of P-fimbrial-mediated adherence in pyelonephritis and persistence of uropathogenic Escherichia coli (UPEC) in the mammalian kidney, Kidney International. 72 19–25. DOI: 10.1038/SJ.KI.5002230.
  33. C.C. Tseng, J.J. Huang, M.C. Wang, A.B. Wu, W.C. Ko, W.C. Chen, J.J. Wu, (2007) PapG II adhesin in the establishment and persistence of Escherichia coli infection in mouse kidneys, Kidney International. 71 764–770. DOI: 10.1038/SJ.KI.5002111.
  34. L.K. McLellan, D.A. Hunstad, (2016) Urinary Tract Infection: Pathogenesis and Outlook, Trends in Molecular Medicine. 22 946. DOI: 10.1016/J.MOLMED.2016.09.003.
  35. S. Gupta, P. Kumar, B. Rathi, V. Verma, R.S. Dhanda, P. Devi, M. Yadav, (2021) Targeting of Uropathogenic Escherichia coli papG gene using CRISPR-dot nanocomplex reduced virulence of UPEC, Scientific Reports. 11. DOI: 10.1038/S41598-021-97224-4.
  36. A. Ronald, (2003) The etiology of urinary tract infection: Traditional and emerging pathogens, Disease-a-Month. 49 71–82. DOI: 10.1067/MDA.2003.8.
  37. B.S. Norinder, P. Lüthje, M. Yadav, L. Kadas, H. Fang, C.E. Nord, A. Brauner, (2011) Cellulose and PapG are important for Escherichia coli causing recurrent urinary tract infection in women, Infection 2011 39:6. 39 571–574. DOI: 10.1007/S15010-011-0199-0.
  38. N. Karah, R. Rafei, W. Elamin, A. Ghazy, A. Abbara, M. Hamze, B.E. Uhlin, (2020) Guideline for Urine Culture and Biochemical Identification of Bacterial Urinary Pathogens in Low-Resource Settings, Diagnostics (Basel, Switzerland). 10. DOI: 10.3390/DIAGNOSTICS10100832.
  39. (N.d.) AOAC Approves bioMérieux VITEK 2 Identification Cards for Biological Threat Organisms, E. coli O157, Listeria and Staph | bioMérieux,. https://www.biomerieux-usa.com/aoac-approves-biomerieux-vitek-2-identification-cards-biological-threat-organisms-e-coli-o157 (accessed September 13, 2022).
  40. (N.d.) Bacterial Identification - The API-20E System,. https://www.jlindquist.com/generalmicro/102bactid2.html (accessed September 16, 2022).
  41. (N.d.) papA Gene of Avian Pathogenic Escherichia coli on JSTOR,. https://www.jstor.org/stable/41418362 (accessed September 1, 2022).
  42. S. Najafi, M. Rahimi, Z. Nikousefat, (2019) Extra-intestinal pathogenic escherichia coli from human and avian origin: Detection of the most common virulence-encoding genes, Veterinary Research Forum. 10 43–49. DOI: 10.30466/VRF.2019.34307.
  43. Y. Bertin, J.-P. Girardeau, A. Darfeuille-Michaud, C. Martin, (2000) Epidemiological Study of pap Genes among Diarrheagenic or Septicemic Escherichia coli Strains Producing CS31A and F17 Adhesins and Characterization of Pap 31A Fimbriae, JOURNAL OF CLINICAL MICROBIOLOGY. 38 1502–1509.
  44. M. Arthur, C. Campanelli, R.D. Arbeit, C. Kim, S. Steinbach, C.E. Johnson, R.H. Rubin, R. Goldstein, (1989) Structure and copy number of gene clusters related to the pap P-adhesin operon of uropathogenic Escherichia coli., Infection and Immunity. 57 314. DOI: 10.1128/IAI.57.2.314-321.1989.
  45. A.L. Flores-Mireles, J.N. Walker, M. Caparon, S.J. Hultgren, (2015) Urinary tract infections: epidemiology, mechanisms of infection and treatment options, Nature Reviews. Microbiology. 13 269–284. DOI: 10.1038/NRMICRO3432.
  46. M. Biggel, P. Moons, M.N. Nguyen, H. Goossens, S. van Puyvelde, (2022) Convergence of virulence and antimicrobial resistance in increasingly prevalent Escherichia coli ST131 papGII+ sublineages, Communications Biology 2022 5:1. 5 1–10. DOI: 10.1038/s42003-022-03660-x.
  47. N. Karami, A.E. Wold, I. Adlerberth, (2017) Antibiotic resistance is linked to carriage of papC and iutA virulence genes and phylogenetic group D background in commensal and uropathogenic Escherichia coli from infants and young children, European Journal of Clinical Microbiology & Infectious Diseases. 36 721. DOI: 10.1007/S10096-016-2854-Y.
  48. Z. Yazdanpour, O. Tadjrobehkar, M. Shahkhah, (2020) Significant association between genes encoding virulence factors with antibiotic resistance and phylogenetic groups in community acquired uropathogenic Escherichia coli isolates, BMC Microbiology. 20 1–9. DOI: 10.1186/S12866-020-01933-1/FIGURES/1.
  49. (N.d.) (PDF) Frequency of papaA, papC genes and antimicrobial resistance pattern in uropathogenic Escherichia coli,. https://www.researchgate.net/publication/303406199_Frequency_of_papaA_papC_genes_and_antimicrobial_resistance_pattern_in_uropathogenic_Escherichia_coli (accessed September 16, 2022).