##plugins.themes.academic_pro.article.main##

Abstract

Maximizing power extraction from photovoltaic (PV) systems is crucial for improving efficiency, particularly under partial shading conditions (PSCs). The high cost and relatively low conversion efficiency of PV panels necessitate effective maximum power point tracking (MPPT) techniques to ensure operation at the maximum power point (MPP). This paper presents a comprehensive review of 11 MPPT methods reported in the literature, alongside recent advancements in hardware design methodologies. The MPPT techniques are classified into three categories—Classical, Intelligent, and Optimization-based—according to their underlying tracking algorithms. Under uniform irradiance, classical methods are generally preferred due to the presence of a single peak in the power–voltage (P–V) curve. However, under PSCs, the P–V curve exhibits multiple peaks, including one global MPP (GMPP) and several local MPPs (LMPPs). As a result, intelligent and optimization-based techniques have emerged to accurately identify the GMPP among all local peaks. Each MPPT technique is critically analyzed in terms of sensor requirements, hardware implementation complexity, performance under PSCs, cost, tracking speed, and tracking efficiency. This study consolidates recent advancements and highlights potential research directions to support further development in the field.

Keywords

MPPT Partial shading conditions fuzzy logic

##plugins.themes.academic_pro.article.details##

How to Cite
K.A. Ergashov. (2025). A Comprehensive Analysis Of Mppt Techniques For Photovoltaic Systems Under Partial Shading Conditions. Texas Journal of Engineering and Technology, 44, 13–32. Retrieved from https://zienjournals.com/index.php/tjet/article/view/6166

References

  1. Burke, M.J., Stephens, J.C.: ‘Political power and renewable energy futures: a critical review’, Energy Res.
  2. Soc. Sci., 2018, 35, pp. 78–93
  3. . https://minenergy.uz/uz/lists/view/77
  4. . https://www.gazeta.uz/oz/2023/12/28/green-energy/
  5. Kong, X., Liu, X., Lee, K. Y., et al.: ‘Hierarchical distributed model predictive control of standalone
  6. wind/Solar/Battery power system’, IEEE Trans. Syst. Manage. Cybern., Syst., 2019, 49, (8), pp. 1570–1581
  7. Chen, Y., Altermatt, P.P., Chen, D.: ‘From laboratory to production: learning models of efficiency and
  8. manufacturing cost of industrial crystalline silicon and thin-film photovoltaic technologies’, IEEE J.
  9. Photovolt., 2018, 8, (6), pp. 1531–1538[6] Koutroulis, E., Sason, N., Georgiadis, V.: ‘Combined tracking of the maximum power and maximum
  10. efficiency operating points for real-time maximization of the energy production of PV systems’, IEEE Trans.
  11. Power Electron., 2019, 34, (9), pp. 8634–8645
  12. Das, M., Agarwal, V.: ‘Novel high-performance stand-alone solar PV system with high-gain highefficiency DC-DC converter power stages’, IEEE Trans. Ind. Appl., 2015, 51, (6), pp. 4718–4728
  13. Dhimish, M., Holmes, V., Mather, P., et al.: ‘Novel hot spot mitigation technique to enhance photovoltaic
  14. solar panels output power performance’, Sol. Energy Mater. Sol. Cells, 2018, 179, pp. 72–79
  15. Kamarzaman, N.A., Tan, C.W.: ‘A comprehensive review of maximum power point tracking algorithms
  16. for photovoltaic systems’, Renew. Sustain. Energy Rev., 2014, 37, pp. 585–598
  17. Ghasemi, M.A., Foroushani, H.M., Parniani, M.: ‘Partial shading detection and smooth maximum power
  18. point tracking of PV arrays under PSC's’, IEEE Trans. Power Electron., 2016, 31, (9), pp. 6281–6292
  19. Huang, C., Wang, L., Yeung, R.S.C., et al.: ‘A prediction model-guided Jaya algorithm for the PV system
  20. maximum power point tracking’, IEEE Trans. Sustain. Energy, 2018, 9, (1), pp. 45–55
  21. Coelho, R.F., Concer, F.M., Martins, D.C.: ‘A MPPT approach based on temperature measurements
  22. applied in PV systems’. 2010 IEEE Int. Conf. on Sustainable Energy Technologies (ICSET), Kandy, 2010,
  23. pp. 1–6
  24. Bhatnagar, P., Nema, R.K.: ‘Maximum power point tracking control techniques: state-of-the-art in
  25. photovoltaic applications’, Renew. Sustain. Energy Rev., 2013, 23, pp. 224–241
  26. Verma, D., Nema, S., Shandilya, A.M., et al.: ‘Maximum power point tracking (MPPT) techniques:
  27. recapitulation in solar photovoltaic systems’, Renew. Sustain. Energy Rev., 2016, 54, pp. 1018–1034
  28. Pendem, S.R., Mikkili, S., Bonthagorla, P.K.: ‘PV distributed-MPP tracking: total-cross-tied
  29. configuration of string-integrated-converters to extract the maximum power under various PSCs’, IEEE Syst.
  30. J., 2020, 14, (1), pp. 1046–1057
  31. Batzelis, E.I., Kampitsis, G.E., Papathanassiou, S.A., et al.: ‘Direct MPP calculation in terms of the
  32. single-diode PV model parameters’, IEEE Trans. Energy Convers., 2015, 30, (1), pp. 226–236
  33. Esram, T., Chapman, P.L.: ‘Comparison of photovoltaic array maximum power point tracking
  34. techniques’, IEEE Trans. Energy Convers., 2007, 22, (2), pp. 439–449
  35. Lasheen, M., Abdel Rahman, A.K., Abdel-Salam, M., et al.: ‘Adaptive reference voltage-based MPPT
  36. technique for PV applications’, IET Renew. Power Gener., 2017, 11, (5), pp. 715–722
  37. Ahmed, A., Ran, L., Bumby, J.: ‘Perturbation parameters design for hill climbing MPPT techniques’.
  38. IEEE Int. Symp. on Industrial Electronics, 2012, pp. 1819–1824
  39. de Brito, M.A.G., Galotto, L., Sampaio, L.P., et al.: ‘Evaluation of the main MPPT techniques for
  40. photovoltaic applications’, IEEE Trans. Ind. Electron., 2013, 60, (3), pp. 1156–1167
  41. Sera, D., Mathe, L., Kerekes, T., et al.: ‘On the perturb-and-observe and incremental conductance MPPT
  42. methods for PV systems’, IEEE J. Photovolt., 2013, 3, (3), pp. 1070–1078
  43. Subudhi, B., Pradhan, R., et al.: ‘A Comparative Study on Maximum Power Point Tracking Techniques
  44. for Photovoltaic Power Systems’, in IEEE Trans. Sustainable Energy, 2013, 4, (1), pp. 89–98
  45. Kitano, T., Matsui, M., Xu, D., et al.: ‘Power sensor-less MPPT control scheme utilizing power balance
  46. at DC link-system design to ensure stability and response’. 27th Annual Conf. of the IEEE Industrial
  47. Electronics Society (Cat. No.37243) (IECON'01), 2001
  48. Vasquez, J.C., Guerrero, J.M., Luna, A., et al.: ‘Adaptive droop control applied to voltage-source
  49. inverters operating in grid-connected and islanded modes’, IEEE Trans. Ind. Electron., 2009, 56, (10), pp.
  50. –4096
  51. Safari, A., Mekhilef, S.: ‘Simulation and hardware implementation of incremental conductance MPPT
  52. with direct control method using cuk converter’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 1154–11611450
  53. IET Renew. Power Gener., 2020, Vol. 14 Iss. 9, pp. 1433-1452
  54. Kandemir, E., Cetin, N.S., Borekci, S.: ‘A comprehensive overview of maximum power extraction
  55. methods for PV systems’, Renew. Sustain. Energy Rev., 2017, 78, (C), pp. 93–1123
  56. Syafaruddin, S., Karatepe, E., Hiyama, T.: ‘Artificial neural network polar coordinated fuzzy controller
  57. based maximum power point tracking control under partially shaded conditions’, IET Renew. Power Gener.,
  58. , 3, (2), pp. 239–253