##plugins.themes.academic_pro.article.main##

Abstract

Numerous advancements in concrete technologies have significantly influenced structural systems. This review provides an overview of the existing body of research literature pertaining to hollow-core slabs. The existing body of literature pertaining to the current research can be classified based on prior investigations conducted on the topic of weight reduction of slabs. This paper incorporates the principal findings derived from prior research.

Keywords

hollow core slabs reinforcement concrete

##plugins.themes.academic_pro.article.details##

How to Cite
Hussain Ali Yazal, & Prof. Dr. Hussam Ali Mohammed. (2023). State of the Art Review on Hollow Core Slabs. Texas Journal of Engineering and Technology, 26, 106–119. Retrieved from https://zienjournals.com/index.php/tjet/article/view/4745

References

  1. Abdullah, J. A., & Salih, O. A. (2013). ISSN : 1813-162X Tikrit Journal of Engineering Sciences available online at : http://www.tj-es.com Behavior and Design of Partially-Encased Composite Beam-Columns ةصلاخلا. 20(6), 24–36.
  2. Al-Shaarbaf, I. A., Al-Azzawi, A. A., & Abdulsattar, R. (2018). A state of the art review on hollow core slabs. ARPN Journal of Engineering and Applied Sciences, 13(9), 3240–3245.
  3. Al-Yassri, L. S., Ali, A. Y., & AL-Khafaji, M. M. (2017). Experimental investigation for the behavior of hollow core concrete slab reinforced with hybrid reinforcement. Al-Qadisiyah Journal for …, 10(2), 214–225. http://qu.edu.iq/journaleng/index.php/JQES/article/view/287
  4. Alaa Abdelaal, A. (2017). Scholarship at UWindsor Scholarship at UWindsor Shear Strengthening of Prestressed Hollow Core Slabs using Shear Strengthening of Prestressed Hollow Core Slabs using Externally Bonded Glass Fibre Reinforced Polymer Sheets Externally Bonded Glass Fibre Rei. https://scholar.uwindsor.ca/etd
  5. ARAÚJO, D. L., & PINTO, G. D. C. (2020). Fire behavior of shallow prestressed hollow core slabs from computational modeling. Revista IBRACON de Estruturas e Materiais, 13(2), 398–432. https://doi.org/10.1590/s1983-41952020000200011
  6. Brazzale, N., Kennett, D. I., & Marshall, J. B. (2017). Benefits of Top Strand and Steel Fibres in the Design and Manufacture of Hollow-core Precast Floor Slabs . 1998.
  7. Brito, S. H., Mahmoud, K., & El-Salakawy, E. F. (2022). Behavior of Reinforcing Bar Connection of Hollow-Core Slabs to Steel Beams under In-Plane Forces. CivilEng, 3(4), 831–849. https://doi.org/10.3390/civileng3040048
  8. BROO, H., & LUNDGREN, K. (2002). Finite element analyses of hollow core units subjected to shear and torsion. December, 1–70.
  9. Connections, S. B. (2020). Slabs-Rc Beam Connections.
  10. Deeb, A. N., Tarkhan, M. A., & El-Tehewy, E. M. (2016). Shear capacity of pre-stressed hollow core slabs under concentrated load. International Journal of Engineering Sciences & Research, 5(1), 855–863.
  11. Del Río-Bonnín, S., Montoya-Coronado, L. A., Ribas, C. R., Ruiz-Pinilla, J. G., & Cladera., A. (2022). Using iron-based shape memory alloy rebars as hogging prestress for continuity of Hollow-Core Slabs. Fib Symposium, September, 795–802.
  12. Derkowski, W., & Surma, M. (2015). Composite Action of Precast Hollow Core Slabs With Structural Topping. Technical Transactions, 3-B, 15–29. https://doi.org/10.4467/2353737XCT.15.159.4334
  13. Eom, T.-S., Hwang, I.-H., & Park, T.-W. (2015). Evaluation of Shear Strength of Non-prestressed Reinforced Concrete Hollow-Core Slabs. Journal of Korean Society of Hazard Mitigation, 15(6), 43–54. https://doi.org/10.9798/kosham.2015.15.6.43
  14. FLORUŢ, S. C., NAGY-GYÖRGY, T., STOIAN, V., & DIACONU, D. (2009). Strengthening of hollow core precast slabs using FRP composite materials – procedure , testing and rating. Proceedings of the 11th WSEAS International Conference on Sustainability in Science Engineering, May 2014, 496–501.
  15. Hameed, Y. M., & Ismael, M. A. (2021). Structural Behavior of Hollow-core Reinforced Self-compacting Concrete Two-way Slabs. IOP Conference Series: Materials Science and Engineering, 1076(1), 012120. https://doi.org/10.1088/1757-899x/1076/1/012120
  16. Haruna, S. I., Gora, A. M., & Malami, S. I. (2018). Geometric Impact on the Behaviour of Composite Precast Prestressed Concrete Hollow Core Slab. 4(1), 1–11.
  17. Hosny, A., Sayed-Ahmed, E. Y., Abdelrahman, A. A., & Alhlaby, N. A. (2006). Strengthening precast-prestressed hollow core slabs to resist negative moments using carbon fibre reinforced polymer strips: An
  18. Kankeri, P., Chellapandian, M., & Prakash, S. S. (2017). Bonded Overlay Strengthening of Hollow Core Slab with and without Interface Shearkeys Connection. 3rd International Symposium on Connections between Steel and Concrete (Germany), September 27th-29th.
  19. Mahmoud, K., Foubert, S., & El-Salakawy, E. (2016). Strengthening of
  20. Maleknia, M., Biklaryan, M., & Radmehr, M. (2021). Effect of FRP Sheets Length on the Ultimate Loading Capacity of CFRP and GFRP Strengthened Hollow-Core Slabs by the Finite Element Method. 12(13), 5042–5052.
  21. Meleka, N. N., Tayel, M. A., & Heiza, K. M. (2017). Behavior of Precast Prestressed Hollow Core Slabs With Openings: Experimental Study. ERJ. Engineering Research Journal, 40(4), 325–329. https://doi.org/10.21608/erjm.2017.66358
  22. Menezes, F., Filho, D. A., & Ferreira, M. D. A. (2020). V.1 n.1.
  23. Mhalhal, J. M. (2017). Prestressed Precast Hollow-Core Slabs with Different Shear Span to Effective Depth Ratio. Wasit Journal of Engineering Sciences, 5(2), 1–11. https://doi.org/10.31185/ejuow.vol5.iss2.53
  24. Mitasov, V. M., Statsenko, N. V., Sametov, F. K., & Kurbonov, A. M. (2019). Crack Strength of Hollow Core Slabs: Experimental Research. The Russian Automobile and Highway Industry Journal, 16(3), 366–377. https://doi.org/10.26518/2071-7296-2019-3-366-377
  25. Nabil, A., & Mohamed Heiza, K. (2018). Pphc Slabs Strenthened With Different Types of Concrete Toppings. Fifteenth International Conference on Structural and Geotechnical Engineering, December 2018, 1–14. https://www.researchgate.net/publication/333247829
  26. Nguyen, H. T. N., & Tan, K. H. (2020). Effect of steel fibers on fire endurance of extruded hollow-core slabs. 353–362. https://doi.org/10.14264/8a10a18
  27. Pachalla, S. K. S., Dhara, J. S., & Prakash, S. S. (2019). Experimental study on flexural behavior of NSM and external bonded FRP strengthened pretensioned precast hollow core slabs. Journal of Structural Engineering, 46(2), 1–14.
  28. Pachalla, S. K. S., & Prakash, S. S. (2015). Behaviour of Synthetic Fibre Reinforced Prestressed Hollowcore Slabs under Flexure-Shear. 2nd R.N. Raikar International Conference and Banthia- Basheer International Symposium on Advances in Science and Technology of Concrete, June 2016, 1–6.
  29. Pajari, M. (2004). Pure torsion tests on single hollow core slabs. VTT Building and Transport.
  30. Park, M. K., Lee, D. H., Han, S. J., & Kim, K. S. (2019). Web-Shear
  31. Ref: Proceedings of the 8. (2008). September, 17–20.
  32. Rosenthal, I. (1978). Full Scale Test of Continuous Prestressed Hollow-Core Slab. PCI Journal, 23(3), 74–81. https://doi.org/10.15554/pcij.05011978.74.81
  33. Sabr, Y. N., & Jarallah, H. K. (2016). و م ك ن م او ن م آ ني ذ لا ُ الل َّ "* تا ج ر د م ل ع لا او ت و أ ني ذ لا. March 2019.
  34. Saleh, A. R., & Abid Shahatha, M. A. (2014). Optimal Design of Prestressed Concrete Hollow Core Slab Panels. Kufa Journal of Engineering, 5(1), 33–50. https://doi.org/10.30572/2018/kje/511241
  35. Scott, N. L. (1973). Performance of Precast Prestressed Hollow Core Slab With Composite Concrete Topping. J Prestressed Concr Inst, 18(2), 64–77. https://doi.org/10.15554/pcij.03011973.64.77
  36. Thienpont, T., Van Coile, R., De Corte, W., & Caspeele, R. (2023). Capacity and failure modes of restrained hollow core slabs taking into account compressive membrane action. Structural Concrete, June. https://doi.org/10.1002/suco.202201015
  37. Vasilyev, A. S. (2019). Research of stressed-state stiffened hollow strengthened concrete slabs in cracked condition. IOP Conference Series: Materials Science and Engineering, 687(3). https://doi.org/10.1088/1757-899X/687/3/033019
  38. Wicaksana, A., & Rachman, T. (2018). 済無No Title No Title No Title. Angewandte Chemie International Edition, 6(11), 951–952., 3(1), 10–27. https://medium.com/@arifwicaksanaa/pengertian-use-case-a7e576e1b6bf
  39. Wright, H. E., & Burns, N. H. (1974). Deflection of Double Tees and