##plugins.themes.academic_pro.article.main##

Abstract

The motive of this study to investigate the impact of Spirulina Platensis algae powder and zinc sulphate on some haematological and hormonal parameters of female Iraqi- Local goats. 20 female goats were used, aged 2-3 years, average weight of 30.79 ± 0.47, divided randomly (n=5) into four groups. Group1 did not receive any supplements (control group), Group2 (Zn) received (50 mg zinc/kg diet), Group3 (SP) received (5g spirulina/kg diet), Group4 (Zn+Sp) received combined of zinc (50 mg/kg diet) and spirulina (5g/kg diet). The trial period was 180 days. The results indicated that (Sp) and (Zn+Sp) groups significantly (P ≤ 0.05) superior in RBC, Hb, Hct, and significantly decreased (P ≤ 0.05) the percentage of neutrophil cells in all treated groups compared to control. And a significant decrease (P ≤ 0.05) of insulin level in the Sp and Zn+Sp treatments, with an improvement in insulin resistance in all treated animals compared to the control group, with a rise of T4 hormone in Zn and Zn+Sp groups and an increase of T3 in Goats that treated with Zn+Sp supplements. Generally, combination of spirulina platensis algae powder and zinc sulphate can be used to enhance physiological performance of field animals.

Keywords

Spirulina platensis Zinc sulphate Leptin Insulin

##plugins.themes.academic_pro.article.details##

How to Cite
Hayman Ali Mohammad Al-Kaky, & Abdul Khaliq Ahmed Farhan Al-Janabi. (2023). Hematological and Hormonal Effects of Spirulina Platensis Algae Powder and Zinc Sulfate on Iraqi Local Goats During Late Pregnancy. Texas Journal of Agriculture and Biological Sciences, 16, 30–36. Retrieved from https://zienjournals.com/index.php/tjabs/article/view/3983

References

  1. Marshall, N.E., Abrams, B., Barbour, L.A., Catalano, P., Christian, P., Friedman, J.E., Thornburg, K.L. (2022). The importance of nutrition in pregnancy and lactation: lifelong consequences. American journal of obstetrics and gynecology; 226(5):607-632.‏
  2. Sordillo, L. and Aitken, S. (2009). Impact of oxidative stress on the health and immune function of dairy cattle. Vet. Immunol. Immunopathol; 128, 104-109.
  3. Anvar, A.A. and Nowruzi, B. (2021). Bioactive Properties of Spirulina: A Review. Microbial Bioactives; 4(1): 134-142.
  4. Khatoon, N. and Pal, R. (2015). Microalgae in Biotechnological Application: A Commercial Approach. Plant Biology and Biotechnology. Springer, New Delhi; https://doi.org/10.1007/978-81-322-2283-5_2.
  5. Mofeed, J. (2019). Stimulating Gamma-Linolenic Acid Productivity by Arthrospira platensis (Spirulina platensis) Under Different Culture Conditions (Temperatures, Light Regime, and H2O2 stress). Egypt. Acad. J. Biol. Sci. (G. Microbiology); 11(1): 89-99.
  6. Madkour, F.F., El-Shoubaky, G.A., Attia, M.E. (2019). Antibacterial activity of some seaweeds from the Red Sea coast of Egypt. Egypt. Aquat. Biol. Fish.; 23(2): 265-274.
  7. Deyab, M.A., Mofeed, J., Abd El-Halim, E.H., Ward, F. (2020). Antiviral activity of five filamentous cyanobacteria against coxsackievirus B3 and rotavirus. Arch. Microbio.; 202, 213–223.
  8. Ai, X., Yu, P., Li, X., Lai, X., Yang, M., Liu, F., Meng, X. (2023). Polysaccharides from Spirulina platensis: Extraction methods, structural features and bioactivities diversity. International Journal of Biological Macromolecules; 231, 123211.‏
  9. Akbarizare, M., Ofoghi, H., Hadizadeh, M., Moazami, N. (2020). In vitro assessment of the cytotoxic effects of secondary metabolites from Spirulina platensis on hepatocellular carcinoma. Egypt. Liv. J.; 10,1-8.
  10. Christodoulou, C., Mavrommatis, A., Loukovitis, D., Symeon, G., Dotas, V., Kotsampasi, B., Tsiplakou, E. (2023). Effect of Spirulina Dietary Supplementation in Modifying the Rumen Microbiota of Ewes. Animals; 13(4), 740
  11. Princewill, O.I., Uchenna, A.E., Charles, O.I., Uwaezuoke, I.M. (2015). Interactions between dietary minerals and reproduction in farm animal. Global Journal of Animal Scientific Research; 3(2), 524-535.
  12. Hummel, M., Talsma, E.F., Taleon, V., Londoño, L., Brychkova, G., Gallego, S., Raatz, B. and Spillane, C. (2020). Iron, Zinc and Phytic Acid Retention of Biofortified, Low Phytic Acid, and Conventional Bean Varieties When Preparing Common Household Recipes. Nutrients; 12, (658). Doi:10.3390/nu12030658.
  13. Datt, C. and Chhabra, A. (2005). `Mineral status of Indian feeds and fodders: A review`, Indian Journal of Dairy Science; 58, 305-320.
  14. Yatoo, M.I., Saxena, A., Deepa, P.M., Habeab, B.P., Devi, S., Jatav, R.S., Dimri, U. (2013). Role of trace elements in animals: a review. Veterinary World; 6(12): 963-967.
  15. Emon, M. V., Sanford, C., McCoski, S. (2020). Impacts of Bovine Trace Mineral Supplementation on Maternal and Offspring Production and Health. Animals; 10. Doi:10.3390/ani10122404.
  16. Mir, S.H., Mani, V., Pal, R., Malik, T.A., Sharma, S. M. (2018). Zinc in Ruminants: Metabolism and Homeostasis. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. https://doi.org/10.1007/s40011-018-1048-z.
  17. Praharaj, S., Skalicky, M., Maitra, S., Bhadra, P., Shankar, T., Brestic, M., ... & Hossain, A. (2021). Zinc biofortification in food crops could alleviate the zinc malnutrition in human health. Molecules; 26(12), 3509.‏
  18. Hou, R., He, Y., Yan, G., Hou, S., Xie, Z., Liao, C. (2021). Zinc enzymes in medicinal chemistry. European Journal of Medicinal Chemistry; 226, 113877.‏
  19. Krishnaiah, M., Arangasamy, A., Selvaraju, S., Guvvala, P. R., Ramesh, K. (2019). Organic Zn and Cu interaction impact on sexual behaviour, semen characteristics, hormones and spermatozoal gene expression in bucks (Capra hircus). Theriogenology; 130, 130-139. Doi: 10.1016/j.theriogenology .2019.02.026.
  20. Menegatos, J., Chadio, S.E., Karatzas, G. and Stoforos, E. (1995). Progesterone levels throughout progestagen treatment influence the establishment of pregnacy in the goat. Theriogenology; 43(8): 1365-1370.
  21. De Koster, J.D. and Opsomer, G. (2013). Insulin resistance in dairy cows. Vet Clin North Am Food Anim Pract; 29, 299-322.
  22. Duncan, D.B. (1955). Multiple Range and Multiple F Tests. Biometrics, 11,1. https://DOI.org/10.2307/3001478.
  23. Steel, R.G.D. and Torrie, J.H. (1980). Principles and procedures of statistics. A biometrical approach, 2nd Edition, McGraw-Hill Book Company, New York.
  24. Bamerny, A.O., Barwary, M.S., Alkass, J.E. (2022). Changes in Some Haematological and Biochemical Parameters in Local Black Goats During Pregnancy. Iraqi Journal of Agricultural Sciences; 53(2):378-384.
  25. Mohammadiazarm, H., Maniat, M., Ghorbanijezeh, K., Ghotbeddin, N., (2021). Effects of spirulina powder (Spirulina platensis) as a dietary additive on Oscar fish, Astronotus ocellatus: Assessing growth performance, body composition, digestive enzyme activity, immune-biochemical parameters, blood indices and total pigmentation. Aquaculture nutrition; 27, 252–260.
  26. Layer, G., Reichelt, J., Jahn, D., Heinz, D.W. (2010). Structure and function of enzymes in heme biosynthesis. Protein Science; 19,1137-1161.
  27. Alleyne, M., Horne, M.K., Miller, J.L. (2008). Individualized treatment for iron-defciency anemia in adults. Am J Med; 121(11):943–948. https://doi.org/10.1016/j.amjmed.2008.07.012.
  28. Fox, A.H., Liew, C., Holmes, M., Kowalski, K., Mackay, J., Crossley, M. (1999). Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. EMBO J.; 18, 2812-2822.
  29. Bresnick, E.H., Martowicz, M.L., Pal, S., Johnson, K.D. (2005) Developmental control via GATA factor interplay at chromatin domains. J Cell Physiol.; 205, 1-9.
  30. Assar, D.H., Al-Wakeel, R.A., Elbialy, Z.I., El-Maghraby, M.M., Zaghlool, H.K., El-Badawy, A.A., Abdel-Khalek, A.E. (2023). Spirulina platensis algae enhances endogenous antioxidant status, modulates hemato-biochemical parameters, and improves semen quality of growing ram lambs. Adv. Anim. Vet. Sci; 11(4): 595-605.‏ https://dx.doi.org/10.17582/journal.aavs /2023/11.4.595.605.
  31. Aldal’in, H.K., Al-Otaibi, A.M., Alaryani, F.S., Alsharif, I., Alghamdi, Y.S., Abd El-Hack, M.E., Abdelnour, S.A. (2023). Use of zinc nanoparticles and/or prodigiosin to mitigate heat stress in rabbits. Annals of Animal Science;‏ DOI: 10.2478/aoas-2023-0022.
  32. Sugito, S. and Delima, D-M. (2009). Effect of heat stress on body weight gain, heterophile/lymphocite ratio and body temperature in broiler. J. Ked. Hewan; 3 (1): 218- 226.
  33. Belewu, A. and Adewumi, D. (2021). Effect of Green Syntheses Nano Zinc Oxide on Performance Characteristics and Haematobiochemical Profile of West African Dwarf Goats. Animal Research International; 18 (1): 3938-3946.
  34. Simon, J.P., Baskaran, U.L., Shallauddin, K.B., Ramalingam, G., Evan, P.S. (2018). Evidence of antidiabetic activity of Spirulina Fusiformis against streptozotocin-induced diabetic wistar albino rats. 3 Biotech.; 8(2):129.
  35. Oriquat, G.A., Ali, M.A., Mahmoud, S.A., Eid, R. M., Hassan, R., Kamel, M.A. (2019). Improving hepatic mitochondrial biogenesis as a postulated mechanism for the antidiabetic effect of Spirulina platensis in comparison with metformin. Applied Physiology, Nutrition, and Metabolism; 44(4): 357-364.‏
  36. Buchner, D.A., Charrier, A., Srinivasan, E., Wang, L., Paulsen, M.T., Ljungman, M., Bridges, D., Saltiel, A.R. (2015). Zinc finger protein 407 (ZFP407) regulates insulin-stimulated glucose uptake and glucose transporter 4 (Glut4) mRNA. J Biol Chem.; 290, 6376-6386.
  37. Lugara, R., Renner, S., Wolf, E., Liesegang, A., Bruckmaier, R., Giller, K. (2022). Crossbred Sows Fed a Western Diet during Pre-Gestation, Gestation, Lactation, and Post-Lactation Periods Develop Signs of Lean Metabolic Syndrome That Are Partially Attenuated by Spirulina Supplementation. Nutrients; 14, 1-23. https://doi.org/10.3390/nu14173574.
  38. El-Seidy, A., Bashandy, S.A., Ibrahim, F.A., El-Rahman, A., Sahar, S., Farid, O., El-Baset, M.A. (2022). Zinc oxide nanoparticles characterization and therapeutic evaluation on high fat/sucrose diet induced-obesity. Egyptian Journal of Chemistry; 65(9); 497-511.‏
  39. Mosulishvili, L.M., Kirkesali, E.I., Belokobylsky, A.I., Khizanishvili, A.I., Frontasyeva, M.V., Pavlov, S.S., Gundorina, S.F. (2002). Experimental substantiation of the possibility of developing selenium-and iodine-containing pharmaceuticals based on blue–green algae Spirulina platensis. Journal of pharmaceutical and biomedical analysis; 30(1): 87-97.‏
  40. Szanto, I., Pusztaszeri, M., & Mavromati, M. (2019). H2O2 metabolism in normal thyroid cells and in thyroid tumorigenesis: focus on NADPH oxidases. Antioxidants; 8(5): 126.‏
  41. Formigari, A., Irato, P., Santon, A. (2007). Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: biochemical and cytochemical aspects. Comp Biochem Phys.; 146(4): 443-459. https://doi.org/10.1016/j.cbpc.2007.07.010.
  42. Fedala, A., Adjroud, O., Abid-Essefi, S., Timoumi, R. (2021). Protective effects of selenium and zinc against potassium dichromate–induced thyroid disruption, oxidative stress, and DNA damage in pregnant Wistar rats. Environmental Science and Pollution Research; 28, 22563-22576. https://doi.org/10.1007/s11356-020-12268-9.
  43. El-Ratel, I.T., El-Kholy, K.H., Mousa, N.A., El-Said, E.A. (2023). Impacts of selenium nanoparticles and spirulina alga to alleviate the deleterious effects of heat stress on reproductive efficiency, oxidative capacity and immunity of doe rabbits. Animal Biotechnology; 1-14.‏ https://doi.org/10.1080/10495398.2023. 2168198.‏