##plugins.themes.academic_pro.article.main##
Abstract
The motive of this study to investigate the impact of Spirulina Platensis algae powder and zinc sulphate on some haematological and hormonal parameters of female Iraqi- Local goats. 20 female goats were used, aged 2-3 years, average weight of 30.79 ± 0.47, divided randomly (n=5) into four groups. Group1 did not receive any supplements (control group), Group2 (Zn) received (50 mg zinc/kg diet), Group3 (SP) received (5g spirulina/kg diet), Group4 (Zn+Sp) received combined of zinc (50 mg/kg diet) and spirulina (5g/kg diet). The trial period was 180 days. The results indicated that (Sp) and (Zn+Sp) groups significantly (P ≤ 0.05) superior in RBC, Hb, Hct, and significantly decreased (P ≤ 0.05) the percentage of neutrophil cells in all treated groups compared to control. And a significant decrease (P ≤ 0.05) of insulin level in the Sp and Zn+Sp treatments, with an improvement in insulin resistance in all treated animals compared to the control group, with a rise of T4 hormone in Zn and Zn+Sp groups and an increase of T3 in Goats that treated with Zn+Sp supplements. Generally, combination of spirulina platensis algae powder and zinc sulphate can be used to enhance physiological performance of field animals.
Keywords
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Marshall, N.E., Abrams, B., Barbour, L.A., Catalano, P., Christian, P., Friedman, J.E., Thornburg, K.L. (2022). The importance of nutrition in pregnancy and lactation: lifelong consequences. American journal of obstetrics and gynecology; 226(5):607-632.
- Sordillo, L. and Aitken, S. (2009). Impact of oxidative stress on the health and immune function of dairy cattle. Vet. Immunol. Immunopathol; 128, 104-109.
- Anvar, A.A. and Nowruzi, B. (2021). Bioactive Properties of Spirulina: A Review. Microbial Bioactives; 4(1): 134-142.
- Khatoon, N. and Pal, R. (2015). Microalgae in Biotechnological Application: A Commercial Approach. Plant Biology and Biotechnology. Springer, New Delhi; https://doi.org/10.1007/978-81-322-2283-5_2.
- Mofeed, J. (2019). Stimulating Gamma-Linolenic Acid Productivity by Arthrospira platensis (Spirulina platensis) Under Different Culture Conditions (Temperatures, Light Regime, and H2O2 stress). Egypt. Acad. J. Biol. Sci. (G. Microbiology); 11(1): 89-99.
- Madkour, F.F., El-Shoubaky, G.A., Attia, M.E. (2019). Antibacterial activity of some seaweeds from the Red Sea coast of Egypt. Egypt. Aquat. Biol. Fish.; 23(2): 265-274.
- Deyab, M.A., Mofeed, J., Abd El-Halim, E.H., Ward, F. (2020). Antiviral activity of five filamentous cyanobacteria against coxsackievirus B3 and rotavirus. Arch. Microbio.; 202, 213–223.
- Ai, X., Yu, P., Li, X., Lai, X., Yang, M., Liu, F., Meng, X. (2023). Polysaccharides from Spirulina platensis: Extraction methods, structural features and bioactivities diversity. International Journal of Biological Macromolecules; 231, 123211.
- Akbarizare, M., Ofoghi, H., Hadizadeh, M., Moazami, N. (2020). In vitro assessment of the cytotoxic effects of secondary metabolites from Spirulina platensis on hepatocellular carcinoma. Egypt. Liv. J.; 10,1-8.
- Christodoulou, C., Mavrommatis, A., Loukovitis, D., Symeon, G., Dotas, V., Kotsampasi, B., Tsiplakou, E. (2023). Effect of Spirulina Dietary Supplementation in Modifying the Rumen Microbiota of Ewes. Animals; 13(4), 740
- Princewill, O.I., Uchenna, A.E., Charles, O.I., Uwaezuoke, I.M. (2015). Interactions between dietary minerals and reproduction in farm animal. Global Journal of Animal Scientific Research; 3(2), 524-535.
- Hummel, M., Talsma, E.F., Taleon, V., Londoño, L., Brychkova, G., Gallego, S., Raatz, B. and Spillane, C. (2020). Iron, Zinc and Phytic Acid Retention of Biofortified, Low Phytic Acid, and Conventional Bean Varieties When Preparing Common Household Recipes. Nutrients; 12, (658). Doi:10.3390/nu12030658.
- Datt, C. and Chhabra, A. (2005). `Mineral status of Indian feeds and fodders: A review`, Indian Journal of Dairy Science; 58, 305-320.
- Yatoo, M.I., Saxena, A., Deepa, P.M., Habeab, B.P., Devi, S., Jatav, R.S., Dimri, U. (2013). Role of trace elements in animals: a review. Veterinary World; 6(12): 963-967.
- Emon, M. V., Sanford, C., McCoski, S. (2020). Impacts of Bovine Trace Mineral Supplementation on Maternal and Offspring Production and Health. Animals; 10. Doi:10.3390/ani10122404.
- Mir, S.H., Mani, V., Pal, R., Malik, T.A., Sharma, S. M. (2018). Zinc in Ruminants: Metabolism and Homeostasis. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. https://doi.org/10.1007/s40011-018-1048-z.
- Praharaj, S., Skalicky, M., Maitra, S., Bhadra, P., Shankar, T., Brestic, M., ... & Hossain, A. (2021). Zinc biofortification in food crops could alleviate the zinc malnutrition in human health. Molecules; 26(12), 3509.
- Hou, R., He, Y., Yan, G., Hou, S., Xie, Z., Liao, C. (2021). Zinc enzymes in medicinal chemistry. European Journal of Medicinal Chemistry; 226, 113877.
- Krishnaiah, M., Arangasamy, A., Selvaraju, S., Guvvala, P. R., Ramesh, K. (2019). Organic Zn and Cu interaction impact on sexual behaviour, semen characteristics, hormones and spermatozoal gene expression in bucks (Capra hircus). Theriogenology; 130, 130-139. Doi: 10.1016/j.theriogenology .2019.02.026.
- Menegatos, J., Chadio, S.E., Karatzas, G. and Stoforos, E. (1995). Progesterone levels throughout progestagen treatment influence the establishment of pregnacy in the goat. Theriogenology; 43(8): 1365-1370.
- De Koster, J.D. and Opsomer, G. (2013). Insulin resistance in dairy cows. Vet Clin North Am Food Anim Pract; 29, 299-322.
- Duncan, D.B. (1955). Multiple Range and Multiple F Tests. Biometrics, 11,1. https://DOI.org/10.2307/3001478.
- Steel, R.G.D. and Torrie, J.H. (1980). Principles and procedures of statistics. A biometrical approach, 2nd Edition, McGraw-Hill Book Company, New York.
- Bamerny, A.O., Barwary, M.S., Alkass, J.E. (2022). Changes in Some Haematological and Biochemical Parameters in Local Black Goats During Pregnancy. Iraqi Journal of Agricultural Sciences; 53(2):378-384.
- Mohammadiazarm, H., Maniat, M., Ghorbanijezeh, K., Ghotbeddin, N., (2021). Effects of spirulina powder (Spirulina platensis) as a dietary additive on Oscar fish, Astronotus ocellatus: Assessing growth performance, body composition, digestive enzyme activity, immune-biochemical parameters, blood indices and total pigmentation. Aquaculture nutrition; 27, 252–260.
- Layer, G., Reichelt, J., Jahn, D., Heinz, D.W. (2010). Structure and function of enzymes in heme biosynthesis. Protein Science; 19,1137-1161.
- Alleyne, M., Horne, M.K., Miller, J.L. (2008). Individualized treatment for iron-defciency anemia in adults. Am J Med; 121(11):943–948. https://doi.org/10.1016/j.amjmed.2008.07.012.
- Fox, A.H., Liew, C., Holmes, M., Kowalski, K., Mackay, J., Crossley, M. (1999). Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. EMBO J.; 18, 2812-2822.
- Bresnick, E.H., Martowicz, M.L., Pal, S., Johnson, K.D. (2005) Developmental control via GATA factor interplay at chromatin domains. J Cell Physiol.; 205, 1-9.
- Assar, D.H., Al-Wakeel, R.A., Elbialy, Z.I., El-Maghraby, M.M., Zaghlool, H.K., El-Badawy, A.A., Abdel-Khalek, A.E. (2023). Spirulina platensis algae enhances endogenous antioxidant status, modulates hemato-biochemical parameters, and improves semen quality of growing ram lambs. Adv. Anim. Vet. Sci; 11(4): 595-605. https://dx.doi.org/10.17582/journal.aavs /2023/11.4.595.605.
- Aldal’in, H.K., Al-Otaibi, A.M., Alaryani, F.S., Alsharif, I., Alghamdi, Y.S., Abd El-Hack, M.E., Abdelnour, S.A. (2023). Use of zinc nanoparticles and/or prodigiosin to mitigate heat stress in rabbits. Annals of Animal Science; DOI: 10.2478/aoas-2023-0022.
- Sugito, S. and Delima, D-M. (2009). Effect of heat stress on body weight gain, heterophile/lymphocite ratio and body temperature in broiler. J. Ked. Hewan; 3 (1): 218- 226.
- Belewu, A. and Adewumi, D. (2021). Effect of Green Syntheses Nano Zinc Oxide on Performance Characteristics and Haematobiochemical Profile of West African Dwarf Goats. Animal Research International; 18 (1): 3938-3946.
- Simon, J.P., Baskaran, U.L., Shallauddin, K.B., Ramalingam, G., Evan, P.S. (2018). Evidence of antidiabetic activity of Spirulina Fusiformis against streptozotocin-induced diabetic wistar albino rats. 3 Biotech.; 8(2):129.
- Oriquat, G.A., Ali, M.A., Mahmoud, S.A., Eid, R. M., Hassan, R., Kamel, M.A. (2019). Improving hepatic mitochondrial biogenesis as a postulated mechanism for the antidiabetic effect of Spirulina platensis in comparison with metformin. Applied Physiology, Nutrition, and Metabolism; 44(4): 357-364.
- Buchner, D.A., Charrier, A., Srinivasan, E., Wang, L., Paulsen, M.T., Ljungman, M., Bridges, D., Saltiel, A.R. (2015). Zinc finger protein 407 (ZFP407) regulates insulin-stimulated glucose uptake and glucose transporter 4 (Glut4) mRNA. J Biol Chem.; 290, 6376-6386.
- Lugara, R., Renner, S., Wolf, E., Liesegang, A., Bruckmaier, R., Giller, K. (2022). Crossbred Sows Fed a Western Diet during Pre-Gestation, Gestation, Lactation, and Post-Lactation Periods Develop Signs of Lean Metabolic Syndrome That Are Partially Attenuated by Spirulina Supplementation. Nutrients; 14, 1-23. https://doi.org/10.3390/nu14173574.
- El-Seidy, A., Bashandy, S.A., Ibrahim, F.A., El-Rahman, A., Sahar, S., Farid, O., El-Baset, M.A. (2022). Zinc oxide nanoparticles characterization and therapeutic evaluation on high fat/sucrose diet induced-obesity. Egyptian Journal of Chemistry; 65(9); 497-511.
- Mosulishvili, L.M., Kirkesali, E.I., Belokobylsky, A.I., Khizanishvili, A.I., Frontasyeva, M.V., Pavlov, S.S., Gundorina, S.F. (2002). Experimental substantiation of the possibility of developing selenium-and iodine-containing pharmaceuticals based on blue–green algae Spirulina platensis. Journal of pharmaceutical and biomedical analysis; 30(1): 87-97.
- Szanto, I., Pusztaszeri, M., & Mavromati, M. (2019). H2O2 metabolism in normal thyroid cells and in thyroid tumorigenesis: focus on NADPH oxidases. Antioxidants; 8(5): 126.
- Formigari, A., Irato, P., Santon, A. (2007). Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: biochemical and cytochemical aspects. Comp Biochem Phys.; 146(4): 443-459. https://doi.org/10.1016/j.cbpc.2007.07.010.
- Fedala, A., Adjroud, O., Abid-Essefi, S., Timoumi, R. (2021). Protective effects of selenium and zinc against potassium dichromate–induced thyroid disruption, oxidative stress, and DNA damage in pregnant Wistar rats. Environmental Science and Pollution Research; 28, 22563-22576. https://doi.org/10.1007/s11356-020-12268-9.
- El-Ratel, I.T., El-Kholy, K.H., Mousa, N.A., El-Said, E.A. (2023). Impacts of selenium nanoparticles and spirulina alga to alleviate the deleterious effects of heat stress on reproductive efficiency, oxidative capacity and immunity of doe rabbits. Animal Biotechnology; 1-14. https://doi.org/10.1080/10495398.2023. 2168198.