##plugins.themes.academic_pro.article.main##

Abstract

The study was carried out in the laboratory of Fadak Company for Tissue Culture in Abi Al-Khassib district, and the Laboratories of the College of Pharmacy, University of Basrah, Iraq. The nodule stem segments were used as explants that were taken from five-year-old Moringa trees. These explants were cultured on an MS medium supplemented with benzyl adenine at different concentrations (1, 2, 3, and 4 mg L-1 ) for callus induction. The 50 mg weight of induced callus was cultured on MS medium supplemented with different concentrations of chitosan (0, 5, and 10 mg L-1 ) and silver nanoparticles (0, 10, 20, and 30 mg L-1 ) for stimulating the myricetin production. The treatment of 4 mg L-1 benzyl adenine showed significant superiority in the percentage of explant response to callus induction compared to the other treatments, which amounted to 66.0%. But the treatment of 1 mg L-1 benzyl adenine was recorded the lowest response of explants to callus induction, which amounted to 13.77%. The results also showed that the treatment of 5 mg L -1 chitosan was significantly superior in the content of callus of the myricetin compound compared to other treatments, which amounted to 79.572 moles L-1 . The treatment of 10 mg L-1 silver nanoparticles, which recorded the callus content of myricetin compound, amounted to 26.387 moles L-1 . The leaves of Moringa trees recorded 4.714 moles L-1 myricetin compound. While the treatment of silver nanoparticles at 30 mg L-1 recorded the lowest callus content of myricetin, which was 0.668 moles L-1 .

Keywords

Bioactive compound callus explant HPLC device

##plugins.themes.academic_pro.article.details##

How to Cite
Bassam Meftin Ewhayid, Majid Abdulhameed Ibrahim, & Eman Mohammed Abdulzahra. (2022). Effect of Growth Regulators, Chitosan, and Silver Nanoparticles on Callus Induction and Stimulating the Myricetin Production in Moringa (Moringa Oleifera Lam.) Tree. Texas Journal of Agriculture and Biological Sciences, 10, 85–94. Retrieved from https://zienjournals.com/index.php/tjabs/article/view/2796

References

  1. Abd El-kader, A. M., El-Readi, M. Z., Ahmed, A. S., Nafady, A. M., Wink, M., & Ibraheim, Z. Z. (2013). Polyphenols from aerial parts of Polygonum bellardii and their biological activities. Pharmaceutical Biology, 51(8), 1026-1034.
  2. Abdulkarim, S. M., Long, K., Lai, O. M., Muhammad, S. K. S., & Ghazali, H. M. (2005). Some physico-chemical properties of Moringa oleifera seed oil extracted using solvent and aqueous enzymatic methods. Food Chemistry, 93(2), 253-263.
  3. Al-Bahadli, W. A.A. (2020). Abiotic and biotic stimulation, proliferation, callus induction and in vitro production of ginger (Zingiber officinale var. Roscoe cv. White) secondary products. Ph.D. thesis, College of Agriculture, University of Basrah, Basrah, Iraq.
  4. Al-Oubaidi, H. K. (2016). Increasing of Some Medical Flavonoid Compounds of Dodonaea viscosa L. using AgNO3 Nanoparticles in Vitro. Iraqi Journal of Science, 57(1B).
  5. Al-Sahoki, M. and Waheeb, K. A. (1990). Applications in the design and analysis of experiments. The Ministry of Higher Education and Scientific Research in Iraq.
  6. Chibu, H. (2001). Effects of chitosan application on the growth of several crops. CHITIN AND CHITOSAN-Chitin and Chitosan in Life Science-.
  7. Chua, L. S., Latiff, N. A., Lee, S. Y., Lee, C. T., Sarmidi, M. R., & Aziz, R. A. (2011). Flavonoids and phenolic acids from Labisia pumila (Kacip Fatimah). Food chemistry, 127(3), 1186-1192.
  8. Colunga Biancatelli, R. M. L., Berrill, M., Catravas, J. D., & Marik, P. E. (2020). Quercetin and vitamin C: an experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Frontiers in Immunology, 11, 1451.
  9. Farooq, F., Rai, M., Tiwari, A., Khan, A. A., & Farooq, S. (2012). Medicinal properties of Moringa oleifera: An overview of promising healer. Journal of Medicinal Plants Research, 6(27), 4368-4374.
  10. Galbraith, D. W. (2007). Silica breaks through in plants. Nature Nanotechnology, 2(5), 272-273.
  11. Giraldo, J. P., Landry, M. P., Faltermeier, S. M., McNicholas, T. P., Iverson, N. M., Boghossian, A. A., ... & Strano, M. S. (2014). Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Materials, 13(4), 400-408.
  12. Gu, X. F., & Zhang, J. R. (2005). An efficient adventitious shoot regeneration system for Zhanhua winter jujube (Zizyphus jujuba Mill.) using leaf explants. Plant Cell Reports, 23(12), 775-779.
  13. Ibrahim, I. R. (2017). Micropropagation and production of some Moringa oleifera Lam., in vitro. Ph.D. thesis, College of Agriculture, University of Baghdad, Baghdad, Iraq.
  14. Ibrahim, M. A. (2012). In vitro plant regeneration of local pummelo (Citrus grandis (L.) Osbeck.) via direct and indirect organogenesis. Genetics and Plant Physiology, 2(3-4), 187-191.
  15. Ibrahim, M. A., Jasim, A. M., & Abbas, M. F. (2012). In vitro plant regeneration of Indian jujube (Ziziphus mauritiana Lamk.) cv. Zaytoni via indirect organogenesis. Acta Agric. Slov, 99(1), 65-67.
  16. Ibrahim, M. A., and Draaj, I. A. (2020). The effect of explant source and cytokinin concentration on the direct bulb formation of tulip (Tulipa gesnerina L.) by plant tissue culture technique. Plant Cell Biotechnology and Molecular Biology, 111-119.
  17. Jiménez, V. M., Castillo, J., Tavares, E., Guevara, E., & Montiel, M. (2006). In vitro propagation of the neotropical giant bamboo, Guadua angustifolia Kunth, through axillary shoot proliferation. Plant Cell, Tissue and Organ Culture, 86(3), 389-395.
  18. Jung, S. K., Lee, K. W., Kim, H. Y., Oh, M. H., Byun, S., Lim, S. H., ... & Lee, H. J. (2010). Myricetin suppresses UVB-induced wrinkle formation and MMP-9 expression by inhibiting Raf. Biochemical pharmacology, 79(10), 1455-1461.
  19. Koul, B., & Chase, N. (2015). Moringa oleifera Lam.: Panacea to several maladies. J. Chem. Pharm. Res, 7(6), 687-707.
  20. Lin, G. B., Xie, Y., & Li, G. W. (2012). Research advances of myricetin. J. Int. Pharm. Res, 39, 483-487.
  21. Makonnen, E., Hunde, A., & Damecha, G. (1997). Hypoglycaemic effect of Moringa stenopetala aqueous extract in rabbits. Phytotherapy Research: An International Journal Devoted to Medical and Scientific Research on Plants and Plant Products, 11(2), 147-148.
  22. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497.
  23. Oladeji, O. A., Taiwo, K. A., Gbadamosi, S. O., Oladeji, B. S., & Ishola, M. M. (2017). Studies on chemical constituents and nutrients bioavailability in Moringa oleifera leaf and seed. Journal of Scientific Research and Reports, 14(1), 1-12.
  24. Perkin, A. G., & Hummel, J. J. (1896). LXXVI.—The colouring principle contained in the bark of Myrica nagi. Part I. Journal of the Chemical Society, Transactions, 69, 1287-1294.
  25. Poteet, M. D., & Number, U. (2006). Biodiesel crop implementation in Hawaii. Honolulu: Prepared by the Hawaii Agriculture Research Center. Aiea, HI for State of Hawaii Department of Agriculture, 89.
  26. Saini, R. K., Sivanesan, I., & Keum, Y. S. (2016). Phytochemicals of Moringa oleifera: a review of their nutritional, therapeutic and industrial significance. 3 Biotech, 6(2), 1-14.
  27. Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2015). Plant physiology and development (No. Ed. 6). Sinauer Associates Incorporated.
  28. Torney, F., Trewyn, B. G., Lin, V. S. Y., & Wang, K. (2007). Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology, 2(5), 295-300.
  29. Uthairatanakij, A., Teixeira da Silva, J. A., & Obsuwan, K. (2007). Chitosan for improving orchid production and quality. Orchid Science and Biotechnology, 1(1), 1-5.
  30. Vasudevan, A., Selvaraj, N., Ganapathi, A., Kasthurirengan, S., Ramesh Anbazhagan, V., & Manickavasagam, M. (2004). Glutamine: a suitable nitrogen source for enhanced shoot multiplication in Cucumis sativus L. Biologia Plantarum, 48(1), 125-128.
  31. Xu, M. S., Huang, L. Q., Chen, M. L., Ye, H. C., & Li, G. F. (2003). Effect of factors on callus biomass and synthetic mass of hypericin in Hypericum perforatum. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China Journal of Chinese Materia Medica, 28(10), 921-923.
  32. Yadav, S., & Srivastava, J. (2016). Moringa oleifera: a health promising plant with pharmacological characters. Indo Global Journal of Pharmaceutical Sciences, 6(1), 24-33.
  33. Yadav, R., Khare, R. K., & Singhal, A. (2017). Qualitative phytochemical screening of some selected medicinal plants of Shivpuri district (mp). Int. J. Life. Sci. Scienti. Res, 3(1), 844-847.
  34. Yao, Y., Lin, G., Xie, Y., Ma, P., Li, G., Meng, Q., & Wu, T. (2014). Preformulation studies of myricetin: a natural antioxidant flavonoid. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 69(1), 19-26.
  35. Zaid, A., & Tisserat, B. (1983). Morphogenetic responses obtained from a variety of somatic explant tissues of data palm. The Botanical Journal, 96(2), 67-73