##plugins.themes.academic_pro.article.main##
Abstract
The purpose of this case-control study was to examine the association between polymorphisms in the IFN-γ T/A +874 Gene Polymorphism and the development of Type 1 Diabetes mellitus. Samples of blood were taken from 60 people with Type 1 diabetes mellliuts and 40 healthy controls for this study serum levels were found to be significantly higher (p>0.05) than healthy. The frequency of the allele and genotypes in the patient groups and control groups were determined using Allele Specific-PCR, Triiodothyronine (T3), Thyroxine (ng/ml), and Thyroid Stimulating Hormone (mU/L) levels in the blood were measured using a kit designed to do so in accordance with the manufacturer's instructions. The study show a significant (p ≤ 0.05) increase in TSH in Patient subjects (diabetic mellitus ) as compared to the control group as shown in table (4-2) and this result is in agreements with. The study also shown that there is a significant (p ≤ 0.05) increase in both hormones ( T3& T4 ) n the P atient subjects (diabetic mellitus ) when compared to the control group. In the current study liver enzyme (AST, ALP& ALT) shown a significant (p ≤ 0.05) increase in Patient subjects (diabetic mellitus) as compared to the control. Patients had an increased frequency of the TT homozygous and TA heterozygous genotypes compared to controls (15 vs. 22 and 21 vs. 12) respectivelly. When comparing the odds ratios (OR) of 0.38 (95% CI: 0.148 to 1.024) and 1.71 (95% CI: 0.05 to 0.51) for the two groups, with statistically significant difference (p = 0.0539 and P=0.0042) respectively. Patients also had a much higher frequency of the (A) allele than controls did (34.5 vs. 12, OR = 0.327, 95% CI = 0.14 to 0.76, p = 0.009).
Keywords
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Katsarou, A., Gudbjörnsdottir, S., Rawshani, A., Dabelea, D., Bonifacio, E., Anderson, B. J., ... & Lernmark, Å. (2017). Type 1 diabetes mellitus. Nature reviews Disease primers, 3(1), 1-17.
- Qaid, M. M., & Abdelrahman, M. M. (2016). Role of insulin and other related hormones in energy metabolism—A review. Cogent Food & Agriculture, 2(1), 1267691.
- Haller, M. J., Atkinson, M. A., & Schatz, D. (2005). Type 1 diabetes mellitus: etiology, presentation, and management. Pediatric Clinics, 52(6), 1553-1578.
- Paschou, S. A., Papadopoulou-Marketou, N., Chrousos, G. P., & Kanaka-Gantenbein, C. (2018). On type 1 diabetes mellitus pathogenesis. Endocrine connections, 7(1), R38.
- Hardy, M. P., Owczarek, C. M., Jermiin, L. S., Ejdebäck, M., & Hertzog, P. J. (2004). Characterization of the type I interferon locus and identification of novel genes. Genomics, 84(2), 331-345.
- Shuo, L. I., Guifang, F. A. N., Xiaojiaoyang, L. I., Yajie, C. A. I., & Runping, L. I. U. (2023). Modulation of type I interferon signaling by natural products in the treatment of immune-related diseases. Chinese Journal of Natural Medicines, 21(1), 3-18.
- Psarras, A., Emery, P., & Vital, E. M. (2017). Type I interferon–mediated autoimmune diseases: pathogenesis, diagnosis and targeted therapy. Rheumatology, 56(10), 1662-1675.
- Ye, L., Schnepf, D., & Staeheli, P. (2019). Interferon-λ orchestrates innate and adaptive mucosal immune responses. Nature Reviews Immunology, 19(10), 614-625.
- da Silva, H. D. A., da Silva, A. P., da Silva, H. A., Asano, N. M. J., Maia, M. D. M. D., & de Souza, P. R. E. (2014). Interferon gamma and Interleukin 10 polymorphisms in Brazilian patients with systemic lupus erythematosus. Molecular biology reports, 41, 2493-2500.
- Mahmoud, A. A., Sheneef, A., Goda, A. M., Ismail, M. A., & Abualfadl, E. M. (2016). Association of interferon-γ and its (+ 874 T/A) gene polymorphism with type 2 diabetes mellitus in rheumatoid arthritis patients. The Egyptian Rheumatologist, 38(4), 277-282.
- Cooper, D. S. (2001). Subclinical hypothyroidism. New England Journal of Medicine, 345(4), 260-265.
- Rugge, B., Balshem, H., Sehgal, R., Relevo, R., Gorman, P., & Helfand, M. (2012). Screening and treatment of subclinical hypothyroidism or hyperthyroidism. Comparative Effectiveness Reviews, 24:22-28
- Wu, S. Y., Green, W. L., Huang, W. S., Hays, M. T., & Chopra, I. J. (2005). Alternate pathways of thyroid hormone metabolism. Thyroid, 15(8), 943-958.
- Biondi, B., Kahaly, G. J., & Robertson, R. P. (2019). Thyroid dysfunction and diabetes mellitus: two closely associated disorders. Endocrine reviews, 40(3), 789-824.
- Schernthaner-Reiter, M. H., Wolf, P., Vila, G., & Luger, A. (2021). The interaction of insulin and pituitary hormone syndromes. Frontiers in Endocrinology, 12, 626427.
- Mullur, R., Liu, Y. Y., & Brent, G. A. (2014). Thyroid hormone regulation of metabolism. Physiological reviews. 94: 355–382
- Eom, Y. S., Wilson, J. R., & Bernet, V. J. (2022). Links between thyroid disorders and glucose homeostasis. Diabetes & Metabolism Journal, 46(2), 239-256.
- Lin, Y., & Sun, Z. (2011). Thyroid hormone potentiates insulin signaling and attenuates hyperglycemia and insulin resistance in a mouse model of type 2 diabetes. British journal of pharmacology, 162(3), 597-610.
- Crunkhorn, S., & Patti, M. E. (2008). Links between thyroid hormone action, oxidative metabolism, and diabetes risk?. Thyroid, 18(2), 227-237.
- Maxwell, D. B., Fisher, E. A., Ross-Clunis 3rd, H. A., & Estep, H. L. (1986). Serum alkaline phosphatase in diabetes mellitus. Journal of the American College of Nutrition, 5(1), 55-59
- West, J., Brousil, J., Gazis, A., Jackson, L., Mansell, P., Bennett, A., & Aithal, G. P. (2006). Elevated serum alanine transaminase in patients with type 1 or type 2 diabetes mellitus. Journal of the Association of Physicians, 99(12), 871-876.
- Mandal, A., Bhattarai, B., Kafle, P., Khalid, M., Jonnadula, S. K., Lamicchane, J., ... & Gayam, V. (2018). Elevated liver enzymes in patients with type 2 diabetes mellitus and non-alcoholic fatty liver disease. Cureus, 10(11).
- Islam, S., Rahman, S., Haque, T., Sumon, A. H., Ahmed, A. M., & Ali, N. (2020). Prevalence of elevated liver enzymes and its association with type 2 diabetes: A cross‐sectional study in Bangladeshi adults. Endocrinology, diabetes & metabolism, 3(2), e00116.
- Mohamed, J., Nafizah, A. N., Zariyantey, A. H., & Budin, S. (2016). Mechanisms of diabetes-induced liver damage: the role of oxidative stress and inflammation. Sultan qaboos university medical journal, 16(2), e132.
- Mendes-Braz, M., & Martins, J. O. (2018). Diabetes mellitus and liver surgery: the effect of diabetes on oxidative stress and inflammation. Mediators of inflammation, 2018.
- Leung, C., Herath, C. B., Jia, Z., Andrikopoulos, S., Brown, B. E., Davies, M. J., ... & Angus, P. W. (2016). Dietary advanced glycation end-products aggravate non-alcoholic fatty liver disease. World journal of gastroenterology, 22(35), 8026.
- Rungratanawanich, W., Qu, Y., Wang, X., Essa, M. M., & Song, B. J. (2021). Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Experimental & Molecular Medicine, 53(2), 168-188.
- Meisse, D., Van de Casteele, M., Beauloye, C., Hainault, I., Kefas, B. A., Rider, M. H., ... & Hue, L. (2002). Sustained activation of AMP‐activated protein kinase induces c‐Jun N‐terminal kinase activation and apoptosis in liver cells. FEBS letters, 526(1-3), 38-42.
- Inoguchi, Y., Inoguchi, T., Eto, T., Masakado, M., Suehiro, S., Yamauchi, T., & Umeda, F. (2022). Relationship between serum indirect bilirubin levels and skeletal muscle mass in older male and female patients with type 2 diabetes. Plos one, 17(11), e0276976.
- Biondi, B., Kahaly, G. J., & Robertson, R. P. (2019). Thyroid dysfunction and diabetes mellitus: two closely associated disorders. Endocrine reviews, 40(3), 789-824.
- Mah, A. Y., & Cooper, M. A. (2016). Metabolic regulation of natural killer cell IFN-γ production. Critical Reviews™ in Immunology, 36(2).
- Areeshi, M. Y., Mandal, R. K., Dar, S. A., Jawed, A., Wahid, M., Lohani, M., ... & Haque, S. (2021). IFN-γ+ 874 A> T (rs2430561) gene polymorphism and risk of pulmonary tuberculosis: a meta-analysis. Archives of Medical Science: AMS, 17(1), 177.
- Álvarez, G. I., Hernández Del Pino, R. E., Barbero, A. M., Estermann, M. A., Celano, J., Musella, R. M., ... & Pasquinelli, V. (2023). Association of IFN-γ+ 874 A/T SNP and hypermethylation of the-53 CpG site with tuberculosis susceptibility. Frontiers in Cellular and Infection Microbiology, 13, 17.