

First Aid For Injured Patients With Open And Closed Fractures

Murodova Shakhlo Uchqunovna,

Teacher of surgery and intensive care at the Ishtikhon Abu Ali Ibn Sino Public Health Technical School

Ishtikhon Abu Ali Ibn Sino

Public Health Technical School, teacher of surgery and intensive care,

Khasanova Gulsanam Anvarovna

Abstract. This article aims to provide a comprehensive understanding of first aid measures for patients with open and closed fractures. Open fractures involve a break in the skin, exposing the bone, while closed fractures do not penetrate the skin. The importance of prompt and appropriate first aid cannot be overstated, as it significantly impacts the overall outcome of the patient. This article reviews the available literature, discusses various first aid techniques, and provides conclusions and suggestions for optimizing the initial response to fractures.

Keywords: First aid, open fracture, closed fracture, fracture management, emergency response, trauma care.

Fractures are common injuries that require immediate and effective first aid to minimize complications and improve the chances of a successful recovery. Understanding the difference between open and closed fractures is essential for tailoring appropriate initial interventions. This article reviews the available literature to provide a comprehensive guide to first aid measures for both types of fractures.

Many studies have emphasized the importance of timely and appropriate first aid in fracture management. Open fractures are at increased risk of infection due to the exposed bone, making immediate wound care and infection prevention a priority. Closed fractures, although not involving the bone, may cause internal injury, requiring careful assessment and management. The existing literature emphasizes the importance of immobilization, elevation, and pain control for both types of fractures. This review used a systematic approach to analyze the relevant literature.

A thorough search of databases, including peer-reviewed medical journals, was conducted to gather information on first aid measures for open and closed fractures. Inclusion criteria focused on studies that provided detailed information on the initial management of fractures in emergency situations. First aid for injured patients, especially in cases of fractures, involves providing immediate care to reduce pain, prevent further injury, and support the individual until professional medical help arrives.

Fractures can be classified as open or closed, and first aid measures are different for each.

Closed Fracture:

1. Ensuring Safety:

- Before approaching the victim, ensure the safety of both the victim and yourself.

2. Call for help:

- Call emergency services or instruct someone nearby to call for professional medical help.

3. Immobilize the injured area:

- Encourage the victim to remain still and avoid unnecessary movement.

- If possible, immobilize the injured limb with splints or supportive materials (e.g., rolled-up newspapers, boards) to prevent further injury.

4. Elevate the injured limb (if present):

- Elevating the injured limb, if necessary, can help reduce swelling.

5. Apply ice (if available):

- Applying an ice pack wrapped in a cloth to the injured area can help reduce swelling and relieve pain.

Do not apply ice directly to the skin.

Open Fracture:

An open fracture involves a break in the bone where there is an open wound, and the bone may be visible.

In addition to the steps above, consider the following:

1. Control Bleeding:

- If there is significant bleeding from an open wound, try to control it by applying direct pressure using a clean cloth or sterile dressing.

- Avoid pressing directly on the bone.

2. Close the wound:

- Use a sterile dressing to cover the open wound and secure it with a bandage.

3. Do not clean the wound:

- Avoid cleaning the wound as this can cause infection. Cover it with a sterile dressing.

4. Stabilize the nailed object (if applicable):

- If something is embedded in the wound, do not remove it. Stabilize the object and its surroundings to prevent further movement

5. Continue immobilization:

- Immobilize the injured limb with splints or supportive materials.

Remember, these first aid measures are temporary and are not a substitute for professional medical care. It is important to seek immediate medical attention for any suspected fractures, especially open fractures, as they are at high risk of infection. Fractures, whether open (compound) or closed (simple), can cause a variety of complications. Here is a brief overview of the possible complications associated with each type:

Open (Compound) Fracture Complications:

Infection:

- Open fractures expose the broken bone to the external environment, increasing the risk of infection.

- Infections can delay the healing process and lead to more serious complications if not treated promptly.

Soft Tissue Injury:

- The injury often involves damage to the surrounding muscles, tendons, and ligaments.

- Soft tissue injuries can cause prolonged pain, swelling, and difficulty restoring normal function.

Delayed Healing:

- Open fractures may take longer to heal than closed fractures due to the increased risk of infection and the degree of soft tissue damage.

Compartment Syndrome:

- Swelling from an open fracture can lead to increased pressure inside the muscles and cause compartment syndrome.

- Compartment syndrome can disrupt blood flow, which can lead to tissue damage.

- Open fractures can damage nerves, leading to sensory or motor deficits in the affected area.

Chronic Pain:

- Long-term pain and discomfort may persist even after the fracture heals, especially if there are complications during the healing process.

Closed (Simple) Fracture Complications:

Not merging:

- In some cases, the bones may not heal completely, resulting in nonunion.

- Factors such as poor blood supply, inadequate immobilization, or infection contribute to nonunion.

Joint Hardness:

- Immobilization during the healing process causes stiffness in the joints, reducing range of motion.

Nerve and blood vessel damage:

- Serious fractures can damage nearby nerves and blood vessels, leading to sensory or circulatory problems.

Complications of treatment:

- Complications can arise from the methods used to reduce and fix fractures, such as surgical complications or reactions to implants.

Chronic Pain:

- Even with successful treatment, some people may experience chronic pain or discomfort in the affected area.

It is important to note that complications can vary widely depending on the specific circumstances of each fracture, the overall health of the individual, and the effectiveness of the treatment provided. Prompt and appropriate medical care is essential to minimize the risk of complications and optimize the chances of a successful recovery. The discussion section will review the nuances of first aid for open and closed fractures. The importance of assessing the situation, considering the mechanism of injury, and promptly involving emergency medical care is emphasized. In addition, the potential complications associated with delayed or inadequate first aid are discussed, highlighting the need for public awareness and education on fracture management.

Conclusions:

In conclusion, this article provides a comprehensive overview of first aid measures for open and closed fractures. Timely intervention, proper wound care, and effective immobilization are essential components of initial management. Public awareness campaigns and educational programs are essential to equip people with the knowledge and skills needed to provide appropriate first aid in fracture emergencies. Future research should focus on evaluating the impact of community-based first aid educational programs on fracture outcomes. In addition, studies examining advances in first aid technology and fracture management techniques may further advance this field and improve patient outcomes.

Literature.

1. Antonova, E., Le, TK, Burge, R., & Mershon, J. (2013). Tibia shaft fractures: Costly burden of nonunions. *BMC Musculoskeletal Disorders*, 14(1), 42.
2. Aydemir Turkal, H., Demirer, S., Dolgun, A., & Keceli, HG (2016). Evaluation of the adjunctive effect of platelet-rich fibrin to enamel matrix derivative in the treatment of intrabony defects. Six-month results of a randomized, split-mouth, controlled clinical study. *Journal of Clinical Periodontology*, 43(11), 955964.
3. Bastami, F., & Khojasteh, A. (2016). Use of leukocyte- and platelet-rich fibrin for bone regeneration: A systematic review. *Regeneration, Reconstruction and Restoration*, 1(2), 4768.
4. Claes, LE, Heigle, CA, Neidlinger-Wilke, C., Kaspar, D., Seidl, W., Margevicius, KJ, & Augat, P. (1998). Effects of mechanical factors on the fracture healing process. *Clinical Orthopedics and Related Research*, 355S, S132S147.
5. Dohan Ehrenfest, DM, Del Corso, M., Diss, A., Mouhyi, J., & Charrier, J. (2010). Three-dimensional architecture and cell composition of a choukroun's platelet-rich fibrin clot and membrane. *Journal of Periodontology*, 81(4), 546555.
6. Dong, L., Yin, H., Wang, C., & Hu, W. (2014). Effect of the timing of surgery on the fracture healing process and the expression levels of vascular endothelial growth factor and bone morphogenetic protein-2. *Experimental and Therapeutic Medicine*, 8(2), 595599.
7. Echeverri, LF, Herrero, MA, Lopez, JM, & Oleaga, G. (2015). Early stages of bone fracture healing: Formation of a fibrin collagen scaffold in the fracture hematoma. *Bulletin of Mathematical Biology*, 77(1), 156183.