Applying Brown's double exponential smoothing technique to forecast HIV prevalence among people aged 15-49 years in Belize

Dr. Smartson. P. NYONI¹, Thabani NYONI²

¹ZICHIRe Project, University of Zimbabwe, Harare, Zimbabwe ²Independent Researcher & Health Economist, Harare, Zimbabwe

Abstract

This study uses annual time series data on HIV prevalence among people aged 15-49 years for Belize from 1990 to 2020 to predict future trends of HIV prevalence over the period 2021 to 2030. The study utilizes double (Brown) exponential smoothing model. The optimal value of the smoothing constant α is 0.7 based on minimum MSE. The results of the study indicate that annual HIV prevalence among individuals aged 15-49 years will continue to decline over the out of sample period. Therefore, we encourage policy-makers to strengthen HIV case detection, behavioral change interventions and other HIV prevention measures especially among key populations.

Keyword(s): - *Exponential smoothing, Forecasting, HIV prevalence*

Background

Belize reported its first AIDS case in 1986, since then HIV has spread gradually among the general population. The transmission of the HIV virus is propagated by poverty, low levels of condom use, and cultural attitudes that promote multiple sexual partnerships for men. The government has previously reported that poor and migrant families are among the high risk groups for contracting and transmitting HIV across Belize. In addition, Sex between men is also a major risk factor for HIV transmission in Belize. According to USAID, infection rates in the general population is estimated to be between 2 and 4 percent, the epidemic is growing quickly among the heterosexual population. Red Cross Belize reported that the HIV virus is spread mainly through the heterosexual community, with factors such as sexual and gender based violence and gender disparities significantly contributing to the increase in the prevalence rate. The purpose of the national HIV response is to prevent further HIV infection, expanding HIV care, treatment and support, and reducing HIV stigma and discrimination. The aim of this paper is to model and forecast future trends of HIV prevalence among the 15-49 years age group using Brown exponential smoothing model. The results of this study are expected to provide an insight of the likely future trends of HIV prevalence among the sexually active age group and assist in planning and allocation of resources to HIV prevention and treatment programs targeting this age group.

Literature Review

Author (s)	Objective (s)	Methodology	Main finding (s)
Leonardo and Chien	To examine the	-Cross-sectional data	Women aged 15-24
et al. (2023)	factors associated	were analyzed using	years were less likely
	with HIV testing	three Belize Multiple	to have been tested
	among women of	Indicator Cluster	for HIV compared to
	reproductive age in	Surveys. The number	women aged 25-34
	Belize and trends in	of participants were	years. Women from
	HIV testing in 2006,	1,675, 4,096, and	the Mayan ethnic
	2011, and 2015–2016	4,699 women aged	group were less

			15–49 years in 2006, 2011, and 2015–	likely to have been tested than those
			2016, respectively.	from other ethnic groups. Compared to women who spoke
				Spanish, those who spoke English/Creole
				were more likely to
				have been tested for HIV
	Huff et al. (2022)	To explore the interplay between substance use (SU) and HIV in Latin America (LA).	scoping review	Factors associated with HIV among PWUS included being female, IDU and homelessness, and PWUS were
				and PWUS were likely to engage in
				risky sexual behaviors, start
				antiretroviral treatment late, have
				poor adherence, have
				treatment failure, be lost to follow-up,
				have comorbidities, and experience
				higher mortality rates
				and lower quality of life, as has been
				PLWH with SU in other regions
-	Ortíz et al. (2021)	To evaluated factors		Socio-economic and
		associated with viral non suppression	sectional analysis using data from an	clinical factors influence viral
		(VNS) and persistent	ongoing cohort of	suppression in this
		viremia (PV) in people living with HIV (PLHIV)	PLHIV attending the largest HIV clinic in Guatemala	cohort and vary between men and women
		receiving antiretroviral therapy	Guucinala	wonien
-	García et al. (2020)	(ART) in Guatemala -To evaluate the	Prospective	α-mannosidase
	Carola et al. (2020)	performance of the	longitudinal study of	treatment of urine did
		lipoarabinomannan antigen test	PLWH with TB symptoms	not significantly increase the
		(LAM-test) with and without	-	LAM-test performance
		α-mannosidase		performance
		pre-treated urine in a cohort of PLWH in		
		primary care clinics		

Gough & Edwards (2009)	in Guatemala. -To determine TB incidence, and mortality rates and its risk factors in PLWH with TB symptoms To determine the seroprevalence of HIV and identify associated risk factors among inmates at the Belize Central Prison, managed by the Kolbe Foundation, Belize.	Demographic and risk behavior data were collected using an interviewer administered pre- tested questionnaire. A multivariate logistic regression was used to adjust for potential confounders and to identify independent associations with HIV seropositivity.	estimated for the adult population of Belize in 2004 (2.4%). However, the social variables of importance to inmates appeared to reflect the epidemic in the general population, with the exception that male- to-male sex outside
			to-male sex outside prison is likely more important to the male inmate population in Belize.

Methodology

This study utilizes double (Brown) exponential smoothing technique to model and forecast future trends of HIV prevalence among people aged 15-49 years in Belize. In exponential smoothing forecasts are generated from the smoothed original series with the most recent historical data points having greater influence than those in the more distant past as more recent values are allocated more weights than those in the distant past.

Double (Brown) exponential smoothing is specified as follows:

Model equation
$Y_t = \mu_t + \beta_t \mathbf{t} + \varepsilon_t \dots \dots$
Smoothing equation
$S_t = \alpha Y_t + (1 - \alpha) S_{t-1}$
0<¤<1
Trend estimation equation
$T_{t} = \alpha \left(S_{t} - S_{t-1} \right) + (1 - \alpha) T_{t-1} \dots \dots$
Forecasting equation
$f_{t+h} = S_t + [(h-1) + 1/\alpha] T_t[4]$

 Y_t is the actual value of HIV prevalence among people aged 15-49 years at time t

- ε_t is the time varying **error term**
- μ_t is the time varying mean (level) term
- β_t is the time varying **slope term**
- t is the trend component of the time series

 S_t is the exponentially smoothed value of HIV prevalence among people aged 15-49 years at time t (used to estimate the level term)

- α is the exponential smoothing constant for the data and trend
- f_{t+h} is the h step ahead forecast
- T_t is the trend estimate (used to estimate the **slope term**) at time t
- T_{t-1} is the trend estimate at time t-1

Data Issues

This study is based on annual HIV prevalence among people aged 15-49 years in Belize for the period 1990 -2020. The out-of-sample forecast covers the period 2021 - 2030. All the data employed in this research paper was gathered from the World Bank online database.

Study findings

Exponential smoothing Model Summary

Table 1: ES model summary

Variable	Y
Included Observations	31
Smoothing constant	
Alpha (α) for data	0.700
Forecast performance measures	
Mean Absolute Error (MAE)	0.046689
Sum Square Error (SSE)	0.108014
Mean Square Error (MSE)	0.003600
Mean Percentage Error (MPE)	6.632726
Mean Absolute Percentage Error (MAPE)	10.359672

Residual Analysis for the Applied Model

Figure 1: Residual analysis

In-sample Forecast for Y

Figure 2: In-sample forecast for the Y series

Actual and Smoothed graph for Y series

Figure 3: Actual and smoothed graph for Y series

Out-of-Sample Forecast for Y: Actual and Forecasted Graph

Figure 4: Out-of-sample forecast for Y: actual and forecasted graph

Out-of-Sample Forecast for Y: Forecasts only

Table 2: Tabulated out-of-sample forecasts

Year	Forecasted HIV prevalence
2021	1.1574
2022	1.1064
2023	1.0554
2024	1.0045
2025	0.9535
2026	0.9025
2027	0.8515

2028	0.8005
2029	0.7495
2030	0.6985

The main results of the study are shown in table 1. It is clear that the model is stable as confirmed by evaluation criterion as well as the residual plot of the model shown in figure 1. It is projected that annual HIV prevalence among people aged 15-49 years will continue to decline over the out of sample period.

Policy implication and conclusion

The projected downward trend of HIV prevalence in Belize indicates the expected positive impact of the National HIV program in this country. Therefore, policy makers are encouraged to strengthen HIV case detection, behavioral change interventions and other HIV prevention measures especially among key populations.

References

- [1] USAID (2002). HIV/AIDS in Belize and USAID Involvement, HIV/AIDS in Belize, pp.1-4
- [2] Red Cross Belize (2010). Global Alliance on HIV BELIZE, pp. 1-2