Prediction of HIV prevalence among individuals aged 15-49 years in Eritrea using Holt's linear exponential smoothing model

Dr. Smartson. P. NYONI¹, Thabani NYONI²

¹ZICHIRe Project, University of Zimbabwe, Harare, Zimbabwe ²Independent Researcher & Health Economist, Harare, Zimbabwe

<u>Abstract</u>

This study uses annual time series data of HIV prevalence among individuals aged 15-49 years for Eritrea from 1990 to 2020 to predict future trends of HIV prevalence over the period 2021 to 2030. The study utilizes Holt's linear exponential smoothing model. The optimal values of smoothing constants α and β are 0.9 and 0.1 respectively based on minimum MSE. The results of the study indicate that annual HIV prevalence among individuals aged 15-49 years will continue to decline over the out of sample period. Therefore, we encourage authorities to focus on prevention measures especially among high risk groups such as adolescents and key populations.

Keyword (s): - *Exponential smoothing, Forecasting, HIV prevalence*

Background

According to UNAIDS, in 2020, approximately 37.7 million people globally were living with HIV with adults constituting 36.2 million. The data reveals that there is a disproportionate number of people living with HIV (PLWHIV in sub-Saharan Africa (SSA). In addition, approximately 36.3 million people have died of HIV/AIDS-related illnesses in the past 3 decades, and a disproportionate number of these deaths were witnessed in SSA. The rapid scale up of antiretroviral therapy and HIV testing services has significantly reduced HIV/ AIDS related morbidity and mortality. It is essential to highlight the massive global expansion of ART coverage from around 7% in 2010 to 77% in 2020 has increased adult life expectancy. Research evidence has shown that reduction of community viral load through massive rollout of ART in SSA has curbed HIV transmission at the population level (Das *et al.* 2010). Eritrea has played a pivotal role in the HIV response in the region and at continental level. The government focuses on rolling out antiretroviral therapy services to every corner of the country and the package consists of HIV testing, supplying ART medication to people living with HIV, implementation of the combined HIV prevention strategy, and offering support services. The objective of this paper is to model and forecast HIV prevalence among individuals aged 15-49 years for Eritrea using Holt's linear method. The research findings are expected to guide policy, planning and allocation of resources towards targeted HIV prevention, treatment and care programs in the country.

Literature Review

Author(s)	Objective (s)	Methodology	Key finding(s)
Bekolo et al. (2023)	To review current	conducted a	The observed decline
	evidence for	secondary analysis	in HIV prevalence is
	declining HIV	using HIV	statistically valid and
	prevalence despite	prevalence,	reflects the observed
	increasing survival	behavioral and social	decline in risky
	owing to 'universal	determinants data of	sexual behavior that
	test and treat' and to	the Demographic and	need to be sustained
	explore the reason for	Health Survey	by the National HIV
	the decrease,	Program databases	programme
	particularly the role		
	of behavioral change		

Mengistu et al. (2023)	To investigate the prevalence, incidence, and factors associated with first- line cART failure using the virologic (plasma viral load), immunologic and clinical criteria among HIV-infected children	cohort study of children (<18 years of age on treatment for a period of>6 months) enrolled in the pediatric HIV/AIDs treatment program at Orotta National Pediatric Referral Hospital from January 2005 to December 2020 was conducted Applied Pearson Chi- Squire (χ 2) tests or Fishers exacts test, Kaplan– Meier (KM) estimates, and unadjusted and adjusted Cox- proportional hazard regression models	Seven in one hundred children on first-line cART are likely to develop treatment failure (TF) every year
Mengistu et al. (2023)	To describe the incidence, patterns, and factors associated with cART modifications in HIV patients enrolled in four treatment centers in Asmara, Eritrea from 2005 to 2021.	were employed. -Retrospective cohort study combining data from 5020 [males, 1943 (38.7%) vs. females, 3077 (61.3%)] patients were utilized. Data on multiple demographic and clinical variables were abstracted from patient's charts and cART program registry - multi-variable Cox- proportional hazards model and Kaplan– Meier analysis.	Prominent reasons for cART substitution included toxicity/intolerance, drug-shortage, new drug availability, treatment failure, tuberculosis and pregnancy. The most common adverse event (AEs) associated with cART modification included lipodystrophy, anemia and peripheral neuropathy, among others - NRTI backbone (D4T-based: aHR = 1.849, 95% CI 1.449– 2.360, p value < 0.001) were associated with increased cumulative hazard of treatment modification.

Mengistu et al. (2022)	To explore the rates	This was a	A low incidence of
Mengistu et al. (2022)	and predictors of	retrospective cohort	attrition was observed
	attrition in children	study using data from	in this study.
	started on cART in	all paediatric patients	However, there was
	Asmara, Eritrea.	on cART between	high mortality rate in
	Asiliala, Elluca.		
		2005 and 2020,	the first 24 months of
		conducted at the	treatment and late
		Orotta National	presentation
		Referral and	
		Teaching Hospital.	
		Kaplan- Meier	
		estimates of the	
		likelihood of attrition	
		and multivariate Cox	
		proportional hazards	
		models were used to	
		assess the factors	
		associated with	
		attrition.	
Mengistu et al.	To examine the risk	A multicenter,	factors associated
(2022)	factors associated	retrospective 1:2	with increased
	with treatment failure	matched (by age and	likelihood of
	(TF) in Asmara,	gender) case-control	treatment failure (TF)
	Eritrea from 2001 to	study was conducted	included initial
	2020	in four major	nucleoside reverse
		hospitals in Asmara,	transcriptase
		Eritrea on adults aged	inhibitors (NRTI)
		≥ 18 years who were	backbone
		on treatment for at	(Zidovudine +
		least 6 months.	Lamivudine (AZT +
			3TC): adjusted odds
			ratio $(aOR) = 2.70,$
			95% Confidence
			interval (CI): 1.65-
			4.41, P-value <
			0.001), (Abacavir +
			lamivudine (ABC +
			3TC): $aOR = 4.73$,
			95%CI: 1.18–18.92,
			P-value = 0.028], and
			(Stavudine +
			Lamivudine (D4T +
			3TC): $aOR = 5.00;$
			95% CI: 3.03–8.20,
			P-value < 0.001) in
			comparison to
			Emtricitabine and
			Tenofovir diproxil
			fumarate (FTC +
			TDF)
Akuoko et al. (2021)	The study focused on	2019 data by	The results revealed a
Ì , , ,	Cameroon, Ethiopia,	UNAIDS were	disproportionate
	, 1.,		. .

Ghana, and Zambia to	assessed	and	burden of the disease
give a general	compared with	the	among women aged
overview of the HIV	2018 data		15 years and above,
situation in the			as compared to men
region.			of the same ages and
			children below 15
			years. Also, it was
			revealed that ARV
			services among
			pregnant women are
			effective in reducing
			the number of new
			infections among
			newborns.

Methodology

This study utilizes an exponential smoothing technique to model and forecast future trends of annual HIV prevalence among individuals aged 15-49 years in Eritrea. In exponential smoothing forecasts are generated from the smoothed original series with the most recent historical values having more influence than those in the more distant past as more recent values are allocated more weights than those in the distant past. This study uses the Holt's linear method (Double exponential smoothing) because it is an appropriate technique for modeling linear data.

Holt's linear method is specified as follows:

Model equation	
$E_t = \mu_t + \rho_t \mathbf{t} + \varepsilon_t \dots \dots$	
Smoothing equation	
$S_t = \alpha E_t + (1 - \alpha) (S_{t-1} + b_{t-1})[2]$	
0<∝<1	
Trend estimation equation	
$b_{t} = \beta \left(S_{t} - S_{t-1} \right) + (1 - \beta) b_{t-1} \dots \dots$	
0<β<1	
Forecasting equation	
$f_{t+h} = S_t + hb_t.$ [4]	
Priotherestal and a fill V and a fill V and a fill variable of the fill	

- E_t is the actual value of HIV prevalence at time t
- ε_t is the time varying **error term**
- μ_t is the time varying mean (**level**) term
- ρ_t is the time varying **slope term**
- t is the trend component of the time series
- S_t is the exponentially smoothed value of HIV prevalence at time t
- α is the exponential smoothing constant for the data
- β is the smoothing constant for trend
- f_{t+h} is the h step ahead forecast
- b_t is the trend estimate (slope of the trend) at time t
- b_{t-1} is the trend estimate at time t-1

Data Issues

This study is based on annual HIV prevalence among individuals aged 15-49 years in Eritrea for the period 1990 - 2020. The out-of-sample forecast covers the period 2021 - 2030. All the data employed in this research paper was gathered from the World Bank online database.

Findings of the study

Exponential smoothing Model Summary Table 1: ES model summary

Variable	E
Included Observations	31
Smoothing constants	
Alpha (α) for data	0.900
Beta (β) for trend	0.100
Forecast performance measures	
Mean Absolute Error (MAE)	0.099306
Sum Square Error (SSE)	0.783369
Mean Square Error (MSE)	0.025270
Mean Percentage Error (MPE)	-1.011845
Mean Absolute Percentage Error (MAPE)	9.655520

Residual Analysis for the Applied Model

Figure 1: Residual analysis

In-sample Forecast for E

Figure 2: In-sample forecast for the E series

Actual and Smoothed graph for E series

Figure 3: Actual and smoothed graph for E series

Figure 4: Out-of-sample forecast for E: actual and forecasted graph

Out-of-Sample Forecast for E: Forecasts only Table 2: Tabulated out-of-sample forecasts

Year Forecasted HIV prevalence

2021	0.4566
2022	0.4168
2023	0.3771
2024	0.3374
2025	0.2977
2026	0.2580
2027	0.2183
2028	0.1785
2029	0.1388
2030	0.0991

The main results of the study are shown in table 1. It is clear that the model is stable as confirmed by evaluation criterion as well as the residual plot of the model shown in figure 1. It is projected that annual HIV prevalence among individuals aged 15-49 years will continue to decline over the out of sample period.

Policy implication and conclusion

This paper applied double (Holt's) exponential smoothing to predict annual HIV prevalence among individuals aged 15-49 years and results indicate that will continue to decline over the out of sample period. Therefore, policy makers must focus on prevention measures especially among high risk groups such as adolescents and key populations.

References

- [1] UNAIDS (2021). Global HIV & AIDS statistics—2021 fact sheet. http:// www. unaids.org/ en/ resources/ factsheet.
- [2] Das M, Chu PL, Santos G-M, Scheer S, Vittinghoff E (2010). Decreases in community viral load are accompanied by reductions in new HIV infections in San Francisco. PLoS ONE. 2010; 5: e11068.