Local Anesthetics: Review of Pharmacological Considerations

Abdumanobov Mashurbek Mansur o'g'li
Student of group 304-B, Faculty of Pediatric Stomatology, TDSI
research advisor: Tastanova Gulchexra Yeshtayevna
Tulemetov Sobirjon Kalikovich
Ashurov To'lqin Abdullayevich
Gadayev Asliddin Mamarașulovich

Abstract.
Local anesthetics have an impressive history of efficacy and safety in medical and dental practice. Their use is not so regular, and the negative effects are so low, that providers can overlook a lot of their pharmacotherapeutic principles understandable. The purpose of this continuing education article is important for various local anesthesia formulas in current use. Local anesthetics inhibit nerve conduction by inhibiting the passage of sodium ions through channels or ionophores within neural membranes. Usually these channels are present at rest, during which access to sodium ions is prohibited. When the neuron is excited, the channel adopts an activated or open state, in which sodium ions spread to the cell and begin depolarization. After a sharp change in membrane voltage, the sodium channel adopts an inactive state, at which point the active transport mechanisms return sodium ions outward. After this repolarization, the canal receives a normal state of rest. Valuing these sodium channel States helps explain the privileged sensitivity of local anesthetics for different classes of neuronal fibers. Local anesthetics have a greater affinity for receptors within sodium channels in their activated and inactive states than in resting states. Therefore, nerve fibers with a faster firing rate are most susceptible to the effects of local anesthesia. In addition, smaller fibers are usually more sensitive, as a certain amount of local anesthetic solution can block the required amount of sodium channels to completely stop impulse transmission. For these reasons, small, fast-firing autonomous fibers are the most sensitive, then sensitive fibers and finally somatic motor fibers. An anesthesiologist who blocks mixed spinal nerves knows this differential sensitivity very well. Once patients recover from spinal anesthesia, they first restore voluntary motor function, then the sensation returns, and finally they can mimic (autonomic control). The dentist is usually overlooked because the trigeminal nerve branches that are anesthetized for dental procedures consist only of small, quick-firing sensitive fibers. However, many classes of sensitive fibers also differ in diameter and firing rate. For example, pain fibers are more sensitive than those that carry pressure and proprioception. Despite the complete Anesthesia of the pain fibers, the patient may be disturbed by the feeling of pressure.

Keywords: Local anesthetics, Pharmacology, Drug toxicity, Dentistry

Objective
MATERIALS & METHODS
Anesthetic Potency
Local anesthetics vary in their potency, allowing for concentrations that range typically from 0.5 to 4%. This is largely the result of differences in lipid solubility, which enhances diffusion through nerve sheaths and neural membranes. This property is determined by the aromatic ring and its substitutions, along with those added to the tertiary amine. For example, bupivacaine is more lipid soluble and potent than articaine, allowing it to be formulated as a 0.5% concentration (5 mg/mL) rather than a 4% concentration (40 mg/mL).

Metabolism and Elimination
The intermediate chain or linkage provides a convenient basis for classification of local anesthetics, and also determines their pattern of elimination. Amides are biotransformed in the liver but esters are hydrolyzed in the bloodstream by plasma esterases. Ester local anesthetics are no longer packaged in dental cartridges and
are used infrequently, with the exception of benzocaine, found in several topical anesthetic preparations. Articaine is unique in this regard. It is classified as an amide according to its intermediate linkage, but also contains an ester side chain on its aromatic ring. Hydrolysis of this side chain renders the molecule inactive, and it is therefore eliminated in a manner identical to ester anesthetics.

Despite countless factors that affect the amount of local anesthesia that reaches the nerve fibers, the most important factor that determines the onset of anesthesia is the proportion of lipid-soluble molecules, not in the water-soluble state. Although bupivacaine and articaine are both highly lipid soluble, the 4% concentration of articaine provides for a much faster onset.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Brand Name</th>
<th>MSD (plain)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bupivacaine HCl</td>
<td>Marcain</td>
<td>2mg/kg Bupivacaine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2mg/kg Bupivacaine</td>
</tr>
<tr>
<td>Levobupivacaine HCl</td>
<td>Chirocaine</td>
<td>2mg/kg</td>
</tr>
<tr>
<td>Lidocaine HCl</td>
<td>Xylocaine</td>
<td>3mg/kg</td>
</tr>
<tr>
<td>Lidocaine HCl with</td>
<td>Xylocaine with Adrenaline</td>
<td>7mg/kg</td>
</tr>
<tr>
<td>adrenaline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ropivacaine HCl</td>
<td>Naropin</td>
<td>4.3mg/kg</td>
</tr>
<tr>
<td>Prilocaine HCl</td>
<td>Citanest</td>
<td>6mg/kg</td>
</tr>
<tr>
<td>Mepivacaine HCl</td>
<td>Scandonest</td>
<td>6mg/kg</td>
</tr>
</tbody>
</table>

Conclusions

Local anesthetics are drugs that are used in order to temporarily and inversely eliminate painful sensations in certain areas of the body by blocking the transmission of nerve fiber impulses. Local anesthesia is any way to make part of the body indifferent to pain without affecting the mind. In clinical cases, local anesthetics are used in different ways and in different situations that require local pain relief. Local anesthetics are used to relieve pain, pain, itching and irritation associated with violation of the integrity of the skin and mucous membranes, such as cuts, bites, wounds, rashes, allergic conditions, fungal infections, skin wounds and ruptures. From a medical point of view, local anesthesia can be distinguished by the method of clinical use as local anesthesia, infiltrative anesthesia, block or regional anesthesia, spinal anesthesia and epidural anesthesia.
Local anesthesia of the aminoether series includes procaine, chloroprocaine, tetracaine and cocaine. Local anesthesia of the aminoamide series is lidocaine, mepivacaine, bupivacaine, etidocaine, and prilocaine. Topical anesthetics are benzocaine and cyclomethicaine. This chapter describes the chemical structure and synthesis of these chemicals, emphasizing their specific uses. At therapeutic concentrations, local anesthetics inversely block nerve transmission and relieve local sensations while relieving localized pain and preventing muscle activity in the process.

References