##plugins.themes.academic_pro.article.main##
Abstract
It is easy to find the extrema of functions of many variables. This thesis explores the properties of the largest surface and volume forms that are useful in optimization problems using the conditional extremum of multivariate functions.
Keywords
Conditional extremum
Lagrange function
partial derivative
surface
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Samatov S., & Abduvokhidov A. (2021). Finding the largest volume and surface objects using a Lagrange function. Texas Journal of Multidisciplinary Studies, 3, 227–229. Retrieved from https://zienjournals.com/index.php/tjm/article/view/508
References
- Sh.Alimov, R.Ashurov. Matematika analiz, 2-qism.”Mumtoz so’z”, Toshkent, 2018.
- Б.П.Демидович. Сборник задач и упражнений по математическому анализу. 13-е издание, издательство ЧеРо, Москва,1997.
- T.Azlarov, X.Mansurov. Matematik analiz, 2-qism. “O’qituvchi”, Toshkent, 1998.
- G.F. Hadley, "Nonlinear and dynamic programming" , Addison-Wesley (1964).
- G.A. Bliss, "Lectures on the calculus of variations" , Chicago Univ. Press (1947).
- L.S. Pontryagin, V.G. Boltayanskii, R.V. Gamkrelidze, E.F. Mishchenko, "The mathematical theory of optimal processes" , Wiley (1962) (Translated from Russian)