This study presents the synthesis, crystal structure, and optical properties of two-dimensional (2D) layered inorganic-organic (IO) hybrid semiconductors, namely (R-C6H4C2H4NH3)2PbI4, where R can be either CH3 or Cl. These compounds exhibit a natural self-assembly.Synthesis of the nonlinear optical materialls of Inorganic−Organic Hybrid Semiconductors of (Cl-C6H4-C2H4-NH3)2PbI4 with PbJ4 salt, study of its composition and structure by physical research methods. (RNH3) + moieties sandwiched between two infinite 2D layers of the [PbI6] 4- octahedral network, resembling IO multiple quantum wells. The CH3 compound crystallizes in an orthorhombic system in the Cmc21 space group, while the Cl compound crystallizes in a monoclinic system in the P21/c space group. When fabricated as thin films, both compounds exhibit good orientation along the (100) direction. Single crystals and thin films of these compounds display strong Mott-type exciton features at room temperature, which are highly influenced by the self-assembly and crystal packing. The confined excitons, residing within the lowest band gap of the inorganic material, exhibit distinct photoluminescence peaks under one- and two-photon excitation. The perfectly aligned 2D self-assembly generates free excitons, while the locally crumpled layered arrangement leads to energy downshifted excitons.


generates crumpled arrangement excitation


How to Cite
Yuldasheva N.N, Qodamboyev.P.Q, Mukhammadaliev.Kh.G, & Samandarov.E.Sh. (2024). Nonlinear Optical Materials of Inorganic−Organic Hybrid Semiconductors (R− C6H4CHCH3NH3)2PbI4. Texas Journal of Multidisciplinary Studies, 30, 1–7. Retrieved from https://zienjournals.com/index.php/tjm/article/view/5071


  1. Ishihara, T.; Takahashi, J.; Goto, T. Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4. Phys. Rev. B: Condens. Matter Mater. Phys. 1990, 42, 11099.
  2. Guloy, A. M.; Tang, Z.; Miranda, P. B.; Srdanov, V. I. A new luminescent organic-inorganic hybrid compound with large optical nonlinearity. Adv. Mater. 2001, 13, 833−837.
  3. Pradeesh, K.; Yadav, G. S.; Singh, M.; Vijaya Prakash, G. Synthesis, structure and optical studies of inorganic-organic hybrid semiconductor, NH3(CH2)12NH3PbI4. Mater. Chem. Phys. 2010, 124, 44−47.
  4. Mitzi, D. B. A Layered Solution Crystal Growth Technique and the Crystal Structure of (C6H5C2H4NH3)2PbCl4. J. Solid State Chem. 1999, 145, 694−704.
  5. Calabrese, J.; Jones, N. L.; Harlow, R. L.; Herron, N.; Thorn, D. L.; Wang, Y. Preparation and Characterization of Layered Lead Halide Compounds. J. Am. Chem. Soc. 1991, 113, 2328−2330.
  6. Xu, Z.; Mitzi, D. B.; Dimitrakopoulos, C. D.; Maxcy, K. R. Semiconducting perovskites (2-XC6H4C2H4NH3)2SnI4 (X = F, Cl, Br): Steric interaction between the organic and inorganic layers. Inorg. Chem. 2003, 42, 2031−2039.
  7. Kulicka, B.; Jakubas, R.; Ciunik, Z.; Bator, G.; Medycki, W.; Świergiel, J.; Baran, J. Structure, phase transitions and molecular dynamics in 4-methylpyridinium tetrachloroantimonate(III), [4-CH3C5H4NH][SbCl4]. J. Phys. Chem. Solids 2004, 65, 871−879.
  8. Billing, D. G.; Lemmerer, A. Synthesis, characterization and phase transitions in the inorganic-organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4], n = 4, 5 and 6. Acta Crystallogr., Sect. B: Struct. Sci. 2007, 63, 735−747.
  9. Billing, D. G.; Lemmerer, A. Inorganic−organic hybrid materials incorporating primary cyclic ammonium cations: The lead iodide series. CrystEngComm 2007, 9, 236−244.
  10. Billing, D. G.; Lemmerer, A. Inorganic-organic hybrid materials incorporating primary cyclic ammonium cations: The lead bromide and chloride series. CrystEngComm 2009, 11, 1549−1562.
  11. Liu, Y.; Yang, P.; Meng, J. Synthesis, crystal structure and optical properties of a novel organic-inorganic hybrid materials (C9H14N)2PbCl4. Solid State Sci. 2011, 13, 1036−1040.
  12. Park, S.-H.; Oh, I.-H.; Park, S.; Park, Y.; Kim, J. H.; Huh, Y.-D. Canted antiferromagnetism and spin reorientation transition in layered inorganic-organic perovskite (C6H5CH2CH2NH3)2MnCl4. Dalton Trans. 2012, 41, 1237−1242.
  13. Papavassiliou, G. C.; Koutselas, I. B.; Terzis, A.; Whangbo, M. H. Structural and electronic properties of the natural quantum-well system (C6H5CH2CH2NH3)2SnI4. Solid State Commun. 1994, 91, 695−698.
  14. Mitzi, D. B.; Wang, S.; Feild, C. A.; Chess, C. A.; Guloy, A. M. Conducting layered organic-inorganic halides containing <110>- oriented perovskite sheets. Science 1995, 267, 1473
  15. Hong, X.; Ishihara, T.; Nurmikko, A. V. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys. Rev. B: Condens. Matter Mater. Phys. 1992, 45, 6961−6964.
  16. Mitzi, D. B. Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M= Ge, Sn, Pb). Chem. Mater. 1996, 8, 791−800.
  17. Fujisawa, J.-I.; Ishihara, T. Charge-transfer transitions between wires and spacers in an inorganic-organic quasi-one-dimensional crystal methylviologen lead iodide. Phys. Rev. B: Condens. Matter Mater. Phys. 2004, 70, 113203.
  18. Kawano, N.; Koshimizu, M.; Asai, K. The effect of Wannier and Frenkel exciton resonance on the luminescence properties of organic-inorganic layered perovskite-type compounds. J. Phys. Chem. C 2012, 116, 22992−22995.
  19. Pradeesh, K.; Nageswara Rao, K.; Vijaya Prakash, G. Synthesis, structural, thermal and optical studies of inorganic-organic hybrid semiconductors, R-PbI4. J. Appl. Phys. 2013, 113, 083523.
  20. Takahashi, Y.; Obara, R.; Lin, Z.-Z.; Takahashi, Y.; Naito, T.; Inabe, T.; Ishibashi, S.; Terakura, K. Charge-transport in tin-iodide perovskite CH3NH3SnI4: Origin of high conductivity. Dalton Trans. 2011, 40, 5563−5568.
  21. Prakash, G. V.; Pradeesh, K.; Ratnani, R.; Saraswat, K.; Light, M. E.; Baumberg, J. J. Structural and optical studies of local disorder sensitivity in natural organic−inorganic self-assembled semiconductors. J. Phys. D: Appl. Phys. 2009, 42, 185405.
  22. Zhang, S.; Lanty, G.; Lauret, J.-S.; Deleporte, E.; Audebert, P.; Galmiche, L. Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors. Acta Mater. 2009, 57, 3301−3309.
  23. Kagan, C. R.; Mitzi, D. B.; Dimitrakopoulos, C. D. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 1999, 286, 945−947.
  24. Mitzi, D. B.; Dimitrakopoulos, C. D.; Kosbar, L. L. Structurally tailored organic-inorganic perovskites: Optical properties and solution-processed channel materials for thin-film transistors. Chem. Mater. 2001, 13, 3728−3740.
  25. Mitzi, D. B.; Dimitrakopoulos, C. D.; Rosner, J.; Medeiros, D. R.; Xu, Z.; Noyan, C. Hybrid field-effect transistor based on a low-temperature melt processed channel layer. Adv. Mater. 2002, 14, 1772−1776.