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Abstract: In this paper we discuss the continuation polyharmonic function its values and the values of its
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The paper proposes an explicit continuation formula for solving the Cauchy problem for the
polyharmonic equation in the statement of M.M. Lavrentieva. The continuation formulas found here are
complete analogues of the classical Riemann, Voltaire and Hadamard formulas that they constructed to
solve the Cauchy problem in the theory of linear equations of the second order. Sh. Yarmukhamedov in
2003 in the article “The Cauchy Problem for the Polyharmonic Equation” having solved the problem,
obtained the result when the region is simply connected with the boundary -oD,, consisting of a cone

surface. Juraeva N.Yu. 2004 in the article “The Cauchy Problem for Polyharmonic Functions” [3], proved
some theorems when D - unlimited area lying in the layer
{y:y:(yl,y2,...,ym),(yl,yz,...,ym)eRm o<y, <h} with border oD =LuUS,
L={y:y, =0} S={y:y,=f(y,s.Vy)} Where f(y,,.,y,,) has first-order bounded partial
derivatives.

In this paper, similar results are obtained in the case when the region has the following form:

Let be R™ - m- dimensional real Euclidean space, X =(X,,X,, Xz, X b Y = (Y1 Yor Yareenr Y )

T

XxeR™ yeR™ X =(0,Xy,00, X ) Y =(0,Y, 000, ¥, ) 12 :|x—y|,s=|x’—y’2, h==,p>0a’=s
)

D- unlimited area lying in the layer {y:y=(Yy,,Y,...¥,)€R,0<y, <h} with border
D ={y:y=(¥i Vo Y ) V2 =00US,  S={y1y =V Y ) Yoo = F (Yoo Vs )}
e f(yl,..., ymfl) the function satisfies the Lyapunov condition with a fixed constant.
The following problem is solved (Cauchy problem).Let me ueC®"(D) u A'u(y)=0,yeD (1)
u(y)=F(y), Au(y)=F (¥),..A"u(y)=F_(y), yeS

W) g (y), PUD g (y), I gy yes,
dn dn dn

where F,(y), G;(y) given on oD continuous functions, i - external normal to 0D . Restore required u(y)
B D.

We assume that the solution u(y) tasks (1)—(2) exists and is continuously differentiable, 2n-1
times up to the end points of the boundary and satisfies a certain growth condition (correctness class), which
ensures the uniqueness of the solution. Then an explicit continuation formula is established, which is a
multidimensional analogue of the classical Carleman formula from the theory of analytic functions.
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Functions ¢_(y,x) u ®_(y,x) at s>0,0>0 we define the following equalities: if

m=2k,k =23,..10 (-1)*(k - 2)lo_ (y,x)K(x,, )= dkiz ImL/EK(w) ):I w=iVs+Yy,

ds*? (0—x,

if m=2k+1k=23,...10

(212 (2o, (3, XK x j{ } o ey,

With all the odd m23, as well as even m ¢ condition 2n<m, we believe

D, (1.%) = Cot "0, (9.2, Cppp = (D" (I -M2" 72 ()
For all even m, m =2k, k =1,2,... with the condition 2n > m we believe

®_(y,x)=C,, _[ |m[%}(uz —s)™du @=iu+y, where
0 1

-1

Com= (—1)2‘1[F(n)r(n —%+1}22”ﬂ21“(n)J and function K () has the form

K(w)= exp(cw—achip,(w—h/2)) ()= exp(cw—achip,(w—h/2))

T m=2n+1n>1Klw m=2n,n2>2,
(w+x, +3h)"" (w+x, +3h)"
Theorem 1. For function @.(Y,X) occurs inequality
Co"?a "exp(oy, —acosp,y, chpa), a=>1
X)) < n-2 Lemma -1. If
£ (y: ) Co™2(r™? +ar ™+ a P r PV exp(oy, —acospy,chpa), 0<a <1
p=1
@ (Y, X) harmonic function s R” by variable x including point y , then
k k-
Ao, (y,%) =g, (y,X),
equality is true where
C o9, (¥, X)
?,1(Y,X) = Z(Xj - yj)—+§oa(y' X)
i=1 OX;
function is also a harmonic function 8 R™ by variable x including point vy .
ork ,X) ork X _ o0p, (Y, X
¢g(y ) (y X)+r ¢g(y )=k(Xj—yj)rk 2¢U(y’x)+rk ¢o’(y )
X, 8xj OX; X
o%r* X . or 2 0 X
Evidence: 22 < et 2, (5,0 k(x, - y) T, (r. 0+ klx, -y ot L
OX;, X; OX;
k 2
_+_6L a¢o‘(y1 X) + rk a ¢O‘(y’ X) )
ox;  OX; X5
There fore
n azrk 1
> EEL0 A, (y,0) = kg, (v, 0+ K0~y - e, (0
= i X;
09, (¥,%) &« 0’0, (v,%)
+ 2k k2 7o +) ke
Z ( ) X, ,Z_;‘ o X
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as ¢_ (y,x) harmonic function B R™ by variable X including point Yy

A, (y,X) = (kn+K(k = 2))rZp_(y, %) + 2kr* 2" (x, _yj)ﬁqog(y, X)
j=1 X

i (00,1()’,X)=(kn+k(k—2))gog(y,x)+2kzn: (x -y, )a%(y X)

i
Marking , C=(kn+k(k-2))=k(n+k—-2),  we have

a , 2
Py _ & ((Xl Ly E0. 0.0

—Ca_xi(”g(y' X) + 2k +o+ (X = Yia)

0°9, (Y, X)J+

OX; 0%, 0X; OX;_10X;
09, (Y, X) o°p,(y,X) 3°p,(¥,X)
2K| (X = Y) — L+ (X, -y, ) —
+ ( ox +(% —yi) o + (X, = ¥n) oK 0%
In addition, for a second-order partial derivative
0°p,. (¥, X) 8 8¢> (y,x)
— = — X)+ 2k —» (X, o2 ) =
o ( coa(y ) I;( ox, — )
‘0, (¥, X) 3, (¥, %) 3°p, (¥, %)
"—+2k X L (X Yy — |+
a i [( yl) axlaxiz ( i-1 yl—l) 8Xi715'Xi2
3’p, (¥, %) 3’p, (¥, %) 3°p, (¥, %)
+2K| 2— =+ (X, —y,) — =+ + (X -y ) ———=
( 8Xi2 ( 1 yl ) axg ( n yn ) aXn aXiz
since the harmonic function in a variable including the point
0 0%p,(Y.X) 0°p, (¥, X) 0Ap, (y,X)
A  X) = =2 s P\
¢o’,1(y ) JZ_]; axl Z XJ Z ( ) aXJ
this implies the assertion of the Iemma.
Consequence 1. For function d_(y,x) fair estimate

@, (y,x)| < Cr*?a " exp(oy,, —acos p,B,chpa), a=>1
n-2

D, (y,x)|<Co™*(r™" +a7'r" ™ + 3 a?'r**?)exp(oy, —acos p,B,chp,a)0 <a <1
p=1

Theorem 2. For function @_(y, X) there is an inequality

Co" 'a " exp(oy, —acosp,f,chp,a),a >1

cosg|+r 3
[| | +Za‘2"‘1 2n-p-1) Jexp(aym—acos,olﬂzchpla)0<a<l

d
— X)) <
‘an%(y )

guide cosines of the normal vector. We denote by the space of polyharmonic functions defined in the order,
having continuous partial derivatives of the order up to the end points of the boundary and satisfying the
condition:

> (au(y) +| gradau(y) |)<Cexplexp (). @

Theorem -3. Function, @ _(y, x) fixed x e D function ®_(y, x) satisfies

oA @, (y,x)
an

n-1

5 [ o,

}dsy <C(x)¢(o),

where the constant depends on x and is the external normal to, when o — .
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We denote by the space of polyharmonic functions defined in D of order n, having continuous partial
derivatives of order 2n-1 up to the end points of the boundary and satisfying the condition:

n-1

k=0

ZQAku

(y)+| gradA™“u(y) \)S Cexp(exp p,(y'))-

Theorem - 4. Let for the function u € B, (D) at any point the inequality

:Z:ZAku(y) +

oA u(y)

y!

) (6)

S
<C exp| acosp, yl—E exp p,

where p, < p, < p, < p. Then for any point x, € D equality holds

u(xo):

o [ ML)

k=0 sD

Note that for arbitrary F,(y), G, (y) task (1)-(2) insoluble.

™=

9.

10.

11.
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