On The Stability of the Approximate Solution of the Galerkin Method for A Parabolic Boundary Problem with Divergent Main Part
Keywords:
Boundary value problem, quasilinear equation, boundary condition, Galerkin method, generalized solution, parabolic problem, approximate solution, error estimate, monotonicity, inequalities, time derivative, boundary, region, scalar product, norm, continuity, desired functionAbstract
The article considers the application of the Galerkin method to the solution of boundary value problems of parabolic type with a divergent main part, when the boundary condition contains the time derivative of the desired function
References
Kaсur J. Nonlinear parabolic equations with the mixed nonlinear and nonstationary boundary
conditions// Math Slovoca, 1980, 30, N3, p 213-237
Kaсur J. Nonlinear parabolic boundary valve problems with the time derivative in the boundary
conditions// Lect Notes Math, 1979, 703, p. 170-178.
Mitropolskiy Yu.A., Nijnyx L.P., Kulchitskiy V.L. Nelineyniye zadachi teploprovodnosti s
proizvodnoy po vremeni v granichnom uslovii. – Preprint IM -74-15. Киев.-1974.-32с.
Михлин С.Г. Численная реализация вариационных методов. М.-Наука,-1966.-432 С.
Douglas J Jr, Dupont T. Galerkin methods for parabolic equations with nonlinear foundry
conditions// NumerMalh.- 1973, 20, p. 213-237
Dench J. E., Jr, Galerking methods for some highly nonlinear problems// SIAM Numer anal, 1977,
, p. 327-434.
Jutchell L. А Galerken method for nonlinear parabolic equations with nonlinear boundary
conchtions// SIAM J Numer anal 1979, 16, p. 254-299
Tikhinova I.M., “Application of the stationary Galerkin method to the first boundary value problem
for a mixed high-order equation”, Mathematical notes of NEFU 23:4, 73-81(2016).
Fedorov V.E., “The stationary Galerkin method applied to the first boundary value problem for a
higher order equation with changing time direction”, mathematical notes of NEFU 24:4, 67-75
(2017).
Маматов А.З. Применения метода Галеркина к некоторому квазилинейному уравнению
параболического типа// Вестник ЛГУ,-1981.-№13.-С.37-45.
Маматов А.З., Досанов М.С., Рахманов Ж., Турдибаев Д.Х. Одна задача параболического типа
с дивергентной главной частью// НАУ (Национальная ассоциация ученых). Ежемес. научный
журнал, 2020, №57, 1-часть, С.59-63.
Mamatov, A., Bakhramov, S., Narmamatov, A. An approximate solution by the Galerkin method of
a quasilinear equation with a boundary condition containing the time derivative of the unknown
function. AIP Conference Proceedingsthis link is disabled, 2021, 2365, 070003
Mamatov, A.Z., Narjigitov Х., Rakhmanov J., Turdibayev D. Refining the Galerkin method error
estimation for parabolic type problem with a boundary condition E3S Web of Conferences 304,
(2021) ICECAE 2021 https://doi.org/10.1051/e3sconf/202130403019
Mamatov, A.Z., Rakhmanov J., Mamatov J. S. Obtaining a Priori Error Estimate An Approximate
Solution for a Parabolic Type Problem with a Divergent Principal Part// International Journal of
Modern Agriculture, Volume 10, No.2, 2021.- ISSN: 2305-7246. Р.3958-3963.
Маматов А. Джумабаев Г. Об оценке погрешности приближенного решения для задачи
параболического типа, когда граничное условие содержит производную по времени от
искомой функции//Еurasian journal of mathematical theory and computer sciences Innovative
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
User Rights
Under the Creative Commons Attribution-NonCommercial 4.0 International (CC-BY-NC), the author (s) and users are free to share (copy, distribute and transmit the contribution).
Rights of Authors
Authors retain the following rights:
1. Copyright and other proprietary rights relating to the article, such as patent rights,
2. the right to use the substance of the article in future works, including lectures and books,
3. the right to reproduce the article for own purposes, provided the copies are not offered for sale,
4. the right to self-archive the article.