##plugins.themes.academic_pro.article.main##

Abstract

The article considers the application of the Galerkin method to the solution of boundary value problems of parabolic type with a divergent main part, when the boundary condition contains the time derivative of the desired function

Keywords

Boundary value problem, quasilinear equation, boundary condition, Galerkin method, generalized solution, parabolic problem, approximate solution, error estimate, monotonicity, inequalities, time derivative, boundary, region, scalar product, norm, continuity, desired function

##plugins.themes.academic_pro.article.details##

How to Cite
Mamatov Alisher Zulunovich1, Turdibayev Dilshod Xamidovich2, Nafasov Ganisher Abdurashidovich2 Davlatov Utkir Tagayevich3, Komilov Mirziyo Mirkomilovich3. (2022). On The Stability of the Approximate Solution of the Galerkin Method for A Parabolic Boundary Problem with Divergent Main Part. Texas Journal of Engineering and Technology, 14, 92–97. Retrieved from https://zienjournals.com/index.php/tjet/article/view/3019

References

  1. Kaсur J. Nonlinear parabolic equations with the mixed nonlinear and nonstationary boundary
  2. conditions// Math Slovoca, 1980, 30, N3, p 213-237
  3. Kaсur J. Nonlinear parabolic boundary valve problems with the time derivative in the boundary
  4. conditions// Lect Notes Math, 1979, 703, p. 170-178.
  5. Mitropolskiy Yu.A., Nijnyx L.P., Kulchitskiy V.L. Nelineyniye zadachi teploprovodnosti s
  6. proizvodnoy po vremeni v granichnom uslovii. – Preprint IM -74-15. Киев.-1974.-32с.
  7. Михлин С.Г. Численная реализация вариационных методов. М.-Наука,-1966.-432 С.
  8. Douglas J Jr, Dupont T. Galerkin methods for parabolic equations with nonlinear foundry
  9. conditions// NumerMalh.- 1973, 20, p. 213-237
  10. Dench J. E., Jr, Galerking methods for some highly nonlinear problems// SIAM Numer anal, 1977,
  11. , p. 327-434.
  12. Jutchell L. А Galerken method for nonlinear parabolic equations with nonlinear boundary
  13. conchtions// SIAM J Numer anal 1979, 16, p. 254-299
  14. Tikhinova I.M., “Application of the stationary Galerkin method to the first boundary value problem
  15. for a mixed high-order equation”, Mathematical notes of NEFU 23:4, 73-81(2016).
  16. Fedorov V.E., “The stationary Galerkin method applied to the first boundary value problem for a
  17. higher order equation with changing time direction”, mathematical notes of NEFU 24:4, 67-75
  18. (2017).
  19. Маматов А.З. Применения метода Галеркина к некоторому квазилинейному уравнению
  20. параболического типа// Вестник ЛГУ,-1981.-№13.-С.37-45.
  21. Маматов А.З., Досанов М.С., Рахманов Ж., Турдибаев Д.Х. Одна задача параболического типа
  22. с дивергентной главной частью// НАУ (Национальная ассоциация ученых). Ежемес. научный
  23. журнал, 2020, №57, 1-часть, С.59-63.
  24. Mamatov, A., Bakhramov, S., Narmamatov, A. An approximate solution by the Galerkin method of
  25. a quasilinear equation with a boundary condition containing the time derivative of the unknown
  26. function. AIP Conference Proceedingsthis link is disabled, 2021, 2365, 070003
  27. Mamatov, A.Z., Narjigitov Х., Rakhmanov J., Turdibayev D. Refining the Galerkin method error
  28. estimation for parabolic type problem with a boundary condition E3S Web of Conferences 304,
  29. (2021) ICECAE 2021 https://doi.org/10.1051/e3sconf/202130403019
  30. Mamatov, A.Z., Rakhmanov J., Mamatov J. S. Obtaining a Priori Error Estimate An Approximate
  31. Solution for a Parabolic Type Problem with a Divergent Principal Part// International Journal of
  32. Modern Agriculture, Volume 10, No.2, 2021.- ISSN: 2305-7246. Р.3958-3963.
  33. Маматов А. Джумабаев Г. Об оценке погрешности приближенного решения для задачи
  34. параболического типа, когда граничное условие содержит производную по времени от
  35. искомой функции//Еurasian journal of mathematical theory and computer sciences Innovative