##plugins.themes.academic_pro.article.main##

Abstract

Crisply gathered Jerusalem tubers contain inulinase, a protein that requires inactivation, since of its capacity to hydrolysis inulin into fructose, which can be devoured by microorganism amid marinating. As the traditional pickling process takes 6 months, and involves the addition of a large amount of salt (18–20%), this production strategy is uneconomical and increases the nitrite intake. Additionally, miscellaneous bacteria produced during pickling affect the product taste. In this study, the enzyme inactivation effects of NaCl, NaHCO3, and ultrasound were evaluated. NaHCO3 treatment results in the highest degree of enzyme inactivation; however, the quality and flavor of the obtained Jerusalem tubers pickles were not ideal. The Jerusalem tubers pickles in which the enzymes were inactivated using a combination of NaCl and ultrasound exhibited better flavor than those exposed to NaHCO3; further, this combination reduced the inulinase activity of the Jerusalem tubers to 2.50 U/mL, and maintained the inulin content at 61.22%. The strains LS3 and YS2, identified as Enterococcus facials and the salt-tolerant yeast respectively, were the dominant microorganisms isolated from the pickle juice. Jerusalem tubers with inactivated inulinase were pickled with microbial powder, separated, purified, and dried to remove the natural Jerusalem tubers sauce. This process shortened the fermentation cycle and improved product quality

Keywords

functional food inulinase bioactive ingredients enzyme inactivation

##plugins.themes.academic_pro.article.details##

How to Cite
Narziyev M.S., & Beshimov M.X. (2022). Theoretical Foundations and Analysis of the Jerusalem Tubers. Texas Journal of Engineering and Technology, 8, 168–173. Retrieved from https://zienjournals.com/index.php/tjet/article/view/1852

References

  1. M. Mofijur, H.H. Masjuki, M.A. Kalam, M.A. Hazrat, A.M. Liaquat, M.
  2. Shahabuddin, M. Varman, Prospects of biodiesel from Jatropha in Malaysia,
  3. Renew. Sustain. Energy Rev. 16 (2012) 5007–5020.
  4. Panchev, N. Delchev, D. Kovacheva, A. Slavov, Physicochemical characteristics of inulins obtained from Jerusalem artichoke (Helianthus tuberosus L.), Eur. Food Res. Technol. 233 (2011) 889–896.
  5. P.C. Veggi, J. Martinez, M.A.A. Meireles, Microwave-assisted Extraction for
  6. Bioactive Compounds: Theory and Practice, Food Engineering, Series 4,
  7. Springer, 2013.
  8. F. Goor, X. Dubuisson, J.M. Jossart, Suitability, environmental impact and
  9. energy balance of some energy crops in Belgium, Cahiers Recherches Francophones Agricultures 9 (2000) 59–64.
  10. Hwang, J., Kim, J., Moon, H., Yang, J., and Kim, M. (2017). Determination of
  11. sodium content in traditional fermented foods in Korea. J. Food Compos. Anal.
  12. , 110–114. doi: 10.1016/j.jfca.2016.11.013
  13. Rubel, I. A., Iraporda, C., Novosad, R., Cabrera, F. A., Genovese, D. B., and
  14. Manrique, G. D. (2018). Inulin rich carbohydrates extraction from Jerusalem
  15. artichoke (Helianthus tuberosus L.) tubers and application of different drying
  16. methods. Food Res. Int. 103, 226–233. doi: 10.1016/j.foodres.2017.10.041
  17. Abduraxmonov O.R., Mizomov M.S., Adizova M.R. “Analysis of the composition of fruits and vegetables during the drying process” Eurasian journal of academic research
  18. Djuraev Kh.F., Yodgorova M., Usmonov A.U., Mizomov M.S. “Experimental study of the extraction process of coniferous plants” IOP Conference Series: Earth and Environmental Science, 839 (2021) 042019, IOP Publishing doi:10.1088/1755-1315/839/4/042019.
  19. Исаева, Л. Б. (2011). Некотрые аспекты процесса формирования профессиональной компетентности иностранных студентов российских технических вузов. Вестник Казанского технологического университета, (8), 322-327.
  20. Исаева, Л. Б. (2012). Образовательная среда как предмет психолого-педагогических исследований. Вестник Казанского технологического университета, 15(13), 280-284.
  21. Сабитова, Р. Р., & Исаева, Л. Б. (2014). Экология: курс лекций с комментариями и упражнениями для иностранных студентов технических специальностей. Казань: КНИТУ.
  22. Z.Z.Qodirov, I.A.Oripov, A.Tagiyev, G.Shomurodova, & M.Bobirova. (2022). WATER-SAVING IRRIGATION TECHNOLOGIES IN SOYBEAN IRRIGATION, EFFECT OF SOYBEAN ON GROWTH AND DEVELOPMENT. European Journal of Interdisciplinary Research and Development, 3, 79–84. Retrieved from http://ejird.journalspark.org/index.php/ejird/article/view/33
  23. Egamberdiev M.S, Oripov I.U, & Toshev Sh.Sh. (2022). Development of a Method for Measuring the Layered Moisture State of Concrete and Various Bases. Eurasian Journal of Engineering and Technology, 4, 82–84. Retrieved from https://geniusjournals.org/index.php/ejet/article/view/814
  24. M.S.Egamberdiyev, I.U.Oripov, Sh.Hakimov, M.G.Akmalov, A.U.Gadoyev, & H.B.Asadov. (2022). Hydrolysis during hydration of anhydrous calcium sulfosilicate. Eurasian Journal of Engineering and Technology, 4, 76–81. Retrieved from https://www.geniusjournals.org/index.php/ejet/article/view/812
  25. Rajabov, O., Gapparova, M., Shodiyev, Z., & Inoyatov, I. (2020). Analysis of the technological process of cleaning raw cotton from small trash. International Journal of Emerging Trends in Engineering Research, 8(9), 6022-6029.
  26. Rajabov, O., & Shodiyev, Z. (2019). Analysis of Small Fluctuations of a Multifaceted Mesh under the Influence of Technological Load from the Cleaned Cotton-Raw. International Journal of Advanced Research in Science, Engineering and Technology, 6(10), 11396-9.
  27. Shodiyev, Z., Shomurodov, A., & Rajabov, O. (2020, July). The results of the experimental nature of the vibrations of the grid cotton cleaner. In IOP Conference Series: Materials Science and Engineering (Vol. 883, No. 1, p. 012169). IOP Publishing.
  28. Shodiyev, Z. O. (2004). On mathematical modeling of the process of separation of cotton from the mesh surface of the cotton separator. In Collection of reports of the Republican scientific-technical conference.–Tashkent: TTLP (pp. 15-17).
  29. Мухамедова, З. Г. (2020). СОВЕРШЕНСТВОВАНИЕ ПРИНЦИПОВ ПРОЕКТИРОВАНИЯ ОБОРУДОВАНИЯ МОНТАЖНОЙ ПЛОЩАДКИ АВТОМОТРИСЫ С УЧЕТОМ НОРМ НАДЕЖНОСТИ И РЕАЛЬНОГО СОСТОЯНИЯ. Известия Транссиба, (1 (41)), 83-91.
  30. Мухамедова, З. Г., & Бахшиллоев, С. Х. (2021). СУЩЕСТВУЮЩАЯ ТЕХНОЛОГИЯ ПОГРУЗКИ И РАЗГРУЗКИ СКОРОПОРТЯЩИХСЯ ГРУЗОВ. Журнал Технических исследований, 4(3).
  31. Мухамедова, З. Г. (2021). МЕТОДИЧЕСКИЕ АСПЕКТЫ ПОДГОТОВКИ КАДРОВ НА ОСНОВЕ ПОТРЕБНОСТЕЙ РЕГИОНОВ. ИННОВАЦИИ В ПЕДАГОГИКЕ И ПСИХОЛОГИИ, 4(9).
  32. Мухамедова, З. Г., & Эргашева, З. В. (2021). ЭКОНОМИКО-МАТЕМАТИЧЕСКАЯ МОДЕЛЬ КОНТЕЙНЕРНОГО БЛОК-ТРЕЙНА. Журнал Технических исследований, 4(3).
  33. Mukhamedova, Z. G. (2019). Analysis and Assessment of Power Efficiency of Special Self-Propelled Railway Rolling Stock. Acta of Turin Polytechnic University in Tashkent, 9(3), 104-109.
  34. Хромова, Г. А., Мухамедова, З. Г., & Юткина, И. С. (2016). Оптимизация динамических характеристик аварийно-восстановительных автомотрис. Монография. Научный журнал:«Fan va texnologiya», Ташкент–2016.–253 с.[In.
  35. Мухамедова, З. Г. (2015). Динамическая модель для исследования продольных колебаний главной рамы электровоза с учетом установки демпфирующего поглощающего аппарата в автосцепке. Известия Транссиба, (2 (22)), 18-23.