
Texas Journal of Engineering and Technology ISSN NO: 2770-4491
https://zienjournals.com Date of Publication:24-03-2023
__

Peer Reviewed International Journal [31]
Volume 18

Introduction

There are various ways or algorithms to check if a number is a prime number. Some algorithms are

specific to numbers with certain properties or structures, while others can be applied to any number. The

algorithms that work for any number are highly useful both in theory and in practice. Generally, all primality-

testing algorithms can be grouped into three major categories [1]:

• One-way error probabilistic algorithms;

• probabilistic runtime algorithms;

• deterministic algorithms.

Although exact tests return, a definite answer about whether a number is prime or not, these types of tests

are rarely used in practice because they are slow because of the complexity of the algorithm.

Probabilistic tests - the result of this test is true with a fairly high probability. Repeating them multiple

times with different parameters for the same number makes the probability of error quite small.

The methods used to determine whether a number is prime or not can be categorized into different classes

based on their execution complexity:

• An algorithm is called continuous if its complexity value does not depend on the size of the initial

value, i.e., O(1);

• An algorithm is called linear if its order of complexity is 𝑂(𝑛);

• Exponential rank algorithms - an estimate of the complexity level 𝑂(𝑐^(𝑙𝑜𝑔 𝑛)) for some constant

𝑐 > 1;

• Subexponential level algorithms - complexity level estimate 𝑂(𝑐(log 𝑛)𝛾(log log 𝑛)1−𝛾
) for any

constant 𝑐 > 1 and 0 <  < 1;

• Polynomial algorithms - complexity estimate 𝑂(𝑙𝑜𝑔𝑐𝑛) for some constant𝑐1.

Probabilistic algorithms with one-sided error -Historically, the first one-way error probability algorithms

were algorithms with polynomial execution complexity.

Algorithms whose execution time is probabilistic - The next important step in the development of

primality testing is related to the emergence of algorithms whose execution time is a polynomial time

A method for improving Milner-Rabin algorithm to reduce

the number of false witnesses

Oydin Ahmedova Pulatovna

Research department of information security and cryptology

State Unitary Enterprise Unicon.uz

Tashkent, Uzbekistan

o.ahmedova@unicon.uz

Ulugbek Mardiyev Rasulovich

Cryptology department

TUIT named after Muhammad al-Khwarizmi

Tashkent, Uzbekistan

twofine@mail.ru

Abstract— nowadays, along with the increase in the volume of data, ensuring its protection is one of the

important issues. The best way to ensure data confidentiality is the cryptographic method. One of the main

parameters of public-key cryptoalgorithms is a prime number. This paper presents an analysis of

probabilistic algorithms to check the primality number and improves the Rabin Milner algorithm to reduce

the number of false witnesses.

Keywords — Miller-Rabin test, prime number, recursive function, deterministic algorithms, probabilistic

algorithms

https://zienjournals.com/

Texas Journal of Engineering and Technology ISSN NO: 2770-4491
https://zienjournals.com Date of Publication:24-03-2023
__

Peer Reviewed International Journal [32]
Volume 18

probability. Algorithms belonging to this class are elliptic curve tests (ECC). Algorithms of this type have

very high polynomial complexity, due to which they are not used in practice.

Deterministic algorithms - Deterministic algorithms for checking integers for prime numbers have been

around for more than two thousand years. One of the earliest algorithms we know is Eratosthenes' algorithm,

which determines a prime number by dividing it by the prime numbers preceding it. In general, it is enough to

check that 𝑃𝑖 ≤ ⌊√𝑛⌋ is divisible by all prime numbers. This algorithm is also called the trial division

algorithm.

Algorithms of this type make an explicit decision as to whether the incoming value is prime or complex.

However, such algorithms are impractical because they require large computational registers for very large

numbers.

In practical applications, tests that have a higher degree of polynomial complexity are employed.

Main Part

A. Fermat primality test

The tiny Fermat theorem-based algorithm is the first of these class of algorithms. This test procedure is

based on the theorem proposed by renowned French mathematician Pierre Fermat, known as the "little ferme

theorem" in the 17𝑡ℎ century [2].

If 𝑛 is a prime, then, according to Fermat’s small theorem, the equation 𝑎𝑛−1 ≡ 1 (𝑚𝑜𝑑 𝑛) holds, where 𝑎

is arbitrary and 𝑛 is not divisible by 𝑎. The fulfilment of the equation 𝑎𝑛−1 ≡ 1 (𝑚𝑜𝑑 𝑛) is a necessary and

sufficient condition for determining the primality of a given number 𝑛. That is, if 𝑎𝑛−1 ≠ 1 (𝑚𝑜𝑑 𝑛) for any

𝑎, then 𝑛 is a complex number, otherwise, it is difficult to say anything definite, but the probability of the

number increases. If the comparison 𝑎𝑛−1 ≡ 1 (𝑚𝑜𝑑 𝑛) is performed for a complex number 𝑛, then the

number 𝑛 is called pseudo-prime based on 𝑎.

However, when the number 𝑛 is complex, 𝑎 is found such that the comparison 𝑎𝑛−1 ≡ 1 (𝑚𝑜𝑑 𝑛) is not

performed, such a number 𝑎 is called evidence of the complexity of the number 𝑛, and the previous number

𝑎, which made the comparison, is called a “false witness” of primality 𝑛.

Consequently, when testing a number for prime according to the Ferm theorem, the number 𝑎 is chosen.

𝑎𝑛−1 ≡ 1 (𝑚𝑜𝑑 𝑛) the larger the number 𝑎 that satisfies the condition, the more likely that the number n is

prime. But there are complex numbers 𝑛 such that for 𝑎𝑛−1 ≡ 1 (𝑚𝑜𝑑 𝑛) the comparison holds in an

arbitrary number 𝑎, which is prime with 𝑛. Such numbers are called Carmichael numbers. The set of

Carmichael numbers is an infinite set, the smallest of which is 𝑛 = 561 = 3 ∙ 11 ∙ 17. In spite of this, the

Ferma test is effective in determining composite numbers [3]. The Time complexity of this test is

𝑂(𝑘 𝑙𝑜𝑔𝑛)3.

Input: An odd integer number 𝑛 ≥ 3 and hidden

parameter 𝑡 ≥ 𝑙;
Output: “is 𝑛 prime?” the answer shoul be

“prime” or “complex”.

1. for 𝑖 = 1 to 𝑡 do the following:

1.1. randomly selected the number 𝑎,

satisfying condition 2 ≤ 𝑎 ≤ 𝑛 − 2;

1.2. Calculated 𝑟 = 𝑎𝑛−1;

1.3. If (𝑟 = 1), then returns a "complex

number";

Returns “prime number” [4].

Fermat's theorem suggests that, when checking for primality, several numbers of a should be selected. The

more numbers of a that satisfy the condition 𝑎𝑛−1 ≡ 1 (𝑚𝑜𝑑 𝑛), the higher the likelihood that n is a prime

number. However, there are n complex numbers for which the comparison 𝑎𝑛−1 ≡ 1 (𝑚𝑜𝑑 𝑛) is performed

for any prime number a that is coprime with n. These numbers are known as Carmichael numbers. The

Carmichael number set is an infinite set, and the smallest known Carmichael number is 𝑛 = 561 = 3 ∙
 11 ∙ 17. Nevertheless, the Fermat test remains an effective way of determining primes.

https://zienjournals.com/

Texas Journal of Engineering and Technology ISSN NO: 2770-4491
https://zienjournals.com Date of Publication:24-03-2023
__

Peer Reviewed International Journal [33]
Volume 18

B. Solovay–Strassen primality test

Another primality-testing algorithm in this category is the Solovay-Strassen test, which always correctly

detects prime numbers but may give a wrong answer with a certain probability for composite numbers. The

primary advantage of this test is that it can identify Carmichael numbers as composite, which the Fermat test

cannot do.

The essence of the test is to test not every number in the entire sequence, but a random set of each random

number for 𝑘 times. This algorithm based on Fermat's little theorem.

If p–simple number, and 𝑎 − 𝑎𝑛 integer that is mutually prime with 𝑛, so: 𝑎𝑛−1 ≡ 1(𝑚𝑜𝑑 𝑛).

In this case, the Jacobi symbol is used to define the Carmichael numbers.

(
𝑎

𝑛
) ≡ 𝑎

𝑛−1
2 (𝑚𝑜𝑑 𝑛)

where (
𝑎

𝑛
)–Jacobi symbol, called witness of primality 𝑛 [4].

This test uses the Euler criterion. It is known that according to the Euler criterion, if 𝑎(𝑛−1)/2 = (
𝑎

𝑛
) 𝑚𝑜𝑑 𝑛

condition is satisfied for all witnesses of prime numbers 𝑎 that do not have the greatest common divisor with

𝑛, then n is an odd number of prime numbers.

That is, this algorithm focuses on the elements 1 and −1, which are formed in the column corresponding

to the "prime witnesses" 𝑎, which are mutually simple with 𝑛 in the (𝑛 − 1)/2 row of the table of levels of

prime numbers [5].

If at the end of the test witnesses, the prime number 𝑛 has been discovered as much as iterations 𝑘, the

number 𝑛 is probably simple, with a probability 1 − 2−𝑘. Odd 𝑛 satisfying the test condition and not being

prime is called pseudo-simple Euler numbers at the base 𝑎 [6c]. The complexity value of this test is

𝑂(𝑙𝑜𝑔3р).

The Fermat and Solovay-Strassen tests rely on translating a congruence modulus of primes, or Fermat's

little theorem, or Euler's congruence into a set of composite numbers and hoping it will fail there.

C. Miller-Rabin primality test

The Rabin-Miller test is one of the probabilistic primality tests based on the strong concept of

pseudoprimality.

The test algorithm developed by Michael Rabin, based in part on the ideas of Jerry Miller, is now widely

used in the design of public key cryptosystems. This algorithm is recognized as a powerful algorithm for

testing pseudo prime numbers. Miller-Rabin is a polynomial-time algorithm with a time complexity of

𝑂(𝑘 𝑙𝑜𝑔𝑛)3.

As in the Fermat and Solovay–Strassen tests, we are using the term “witness” to mean a number that

proves n is composite. An odd prime has no Miller–Rabin witnesses, so when 𝑛 has a Miller–Rabin witness it

must be composite [7].

It is based on the representation of 𝑝 − 1in the representation 2𝑠 ∗ 𝑟. Where 𝑠 is the number of divisions of

𝑝 − 1 by two, 𝑟 is an odd number. The Rabin-Miller algorithm is based on the following definition [8].

Definition. Suppose 𝑝 is an odd composite integer, and 𝑝 − 1 = 2𝑠 ∗ 𝑟, where 𝑟 is an odd number. If 𝑎𝑟 ≠

1 (𝑚𝑜𝑑 𝑝) and all 𝑗, 0 𝑗  𝑠 − 1, 𝑎2𝑗𝑟 ≠ −1, then for 𝑝, 𝑎 is called a "strong witness" (composite).

Otherwise, if 𝑎𝑟 = 1 (𝑚𝑜𝑑 𝑝) or for all 0 𝑗  𝑠 − 1, 𝑎2𝑗𝑟 ≠ −1, then 𝑝, 𝑎 is called the number of the

"strong pseudo-prime" according to the basis a. An integer a is called a "strong liarwitness" number for p.

The probability of a test error does not exceed 2−2 for a single value of 𝑥, and if the test is repeated 𝑘

times for different values of 𝑥, the probability of error decreases to 2−2𝑘. Numbers that satisfy this condition

but are not prime are called x-based strong pseudoprime numbers. The complexity of this test is 𝑂(𝑙𝑜𝑔3𝑝). In

the figure below, the prime number generation time represents the dependence of the number of bits.

D. Lucas primality test

The Lucas test was developed on the Lucas side in 1891, an algorithm for determining the numbers (not

just the Mersen and Farm numbers) for the primality, based on the probability used to determine the

primality.

https://zienjournals.com/

Texas Journal of Engineering and Technology ISSN NO: 2770-4491
https://zienjournals.com Date of Publication:24-03-2023
__

Peer Reviewed International Journal [34]
Volume 18

According to the algorithm, an input value 𝑛 is called prime if for any prime 𝑞, which is a divisor of 𝑛 −

1, there exists 𝑎 such that 𝑎𝑛−1 ≡ 1 (𝑚𝑜𝑑 𝑛) and 𝑎(𝑛−1) 𝑞⁄ ≠ 1 (𝑚𝑜𝑑 𝑛), if the conditions are satisfied. This

algorithm requires that the prime divisors of n-1 are known. At present, there is no known complex number

that does not pass a certain number of Rabin-Miller and Lucas tests [9].

E. Proth primality test

Proth theorem is a probabilistic algorithm that is used to test numbers for primality of a certain kind. This

test usually tests numbers of the form 𝑘 ∗ 2𝑛 + 1, where k is an odd integer such that 𝑘 < 2𝑛. A number 𝑝 is

called a prime number if the condition 𝑎(𝑝−1) 2⁄ ≡ −1 (𝑚𝑜𝑑 𝑝) holds for such an integer 𝑎. Prime numbers

of this type are called Prot prime numbers. Prot's theorem quickly determines whether a number is prime or

not. However, it is very slow in determining whether a given number is composite(it is necessary to check

every number from 2 to n). This algorithm is recommended for finding prime numbers within a certain range

[10]. The time complexity of Proth test is 𝑂((𝑘 𝑙𝑜𝑔𝑘 + 𝑙𝑜𝑔𝑛) 𝑙𝑜𝑔𝑛).

F. Pocklington primality test

The Pocklington test, developed by Pocklington and Lammer, determines whether an incoming prime

number can be identified. An input number N is prime if, for any prime number q, which is a divisor of

number N-1, there exists an integer a such that 𝑎𝑁−1 ≡ 1 (𝑚𝑜𝑑 𝑁) and gcd(𝑎(𝑁−1) 𝑞⁄ − 1, 𝑁) = 1. This

algorithm requires that the prime divisors of N-1 are known [11].

Table 1. Below is an analysis of probabilistic algorithms for checking numbers for primality.

Name of test Advantage Disadvantage Complexity

Fermat
- Very simple to implement.

- Base for many tests.

-Failure probability may reach 1.

-Pseudoprime can pass the test.
𝑂 (𝑘 log 𝑛)3

Solovay

Strassen

Pseudoprimes are successfully

announced as composites.

- an Euler pseudoprime can pass the

test.

- Computation of Jacobi symbol adds

more computation overhead.

𝑂 (𝑘 log 𝑛)3

Miller-Rabin

- Fast & efficient.

- Euler Pseudoprimes are

successfully announced as

composites.

Strong pseudoprimes can pass the

test.

𝑂 (𝑘 log 𝑛)3

Pocklington
Very efficient if there is a factor

𝑞 > √𝑛 − 1

Prime factors of 𝑛 − 1are required to

be already known.

𝑂 (𝑙𝑛𝑙𝑛 𝑛)

Lucas
Valid for any generic or special

form numbers.

- Prime factors of 𝑛 − 1are required

to be already known.

- Worst case scenario may take long

time. (if n is composite, this test may

not terminate).

𝑂 (𝑝2 log𝑝 𝑛)

Proth
Very fast and reliable test to decide

about proth number.

Working well only with proth

numbers.

𝑂 ((𝑘 log 𝑘
+ log 𝑛) log 𝑛)

G. Releated Work

The authors of [12] conducted an analysis of the Miller-Rabin and Solovay-Strassen tests, which are based

on probabilistic testing. They concluded that the Miller-Rabin test is highly effective. This analysis was

carried out using a mathematical model.

In reference [13], the authors conducted an analysis of the Miller-Rabin probabilistic test, the deterministic

AKS test, and an elliptic curve test. Based on their analysis, they concluded that the Miller-Rabin test is the

most effective, while the latter two tests are typically used in practice. They also provided mathematical

evidence to demonstrate the superiority of the Miller-Rabin test over the Solovay-Strassen test.

The authors of [14] conducted a study on the correlation between the length of test numbers and the

number of Miller-Rabin rounds required to obtain an accurate result. They also provided suggestions for

https://zienjournals.com/

Texas Journal of Engineering and Technology ISSN NO: 2770-4491
https://zienjournals.com Date of Publication:24-03-2023
__

Peer Reviewed International Journal [35]
Volume 18

selecting a suitable set of bases that can improve the efficiency of Miller-Rabin. The paper ends with a

discussion on several theoretical issues that can enhance the implementation of Miller-Rabin.

In [15], the author discusses the Solovay-Strassen, Miller, and AKS primality tests and presents results

from implementing these methods using Maple. The study aimed to determine the number of steps required

for numbers of varying sizes (ranging from 4 to 12 digits) and to assess the results obtained.

The article [16] provides C++ implementations of several randomized and deterministic primality tests,

including Miller-Rabin, Fermat, Solovay-Strassen, and AKS. The author proves several theorems to help

understand these algorithms and provides explanations of the necessary concepts from number theory. While

the author provides a brief overview of primality tests, they focus on the AKS test and compare its

effectiveness to Fermat's test.

The paper published in [17] describes the implementation of the Lucas probabilistic primality test and

focuses on developing a hardware architecture that is suitable for this test. The effectiveness of this algorithm

was evaluated for numbers of different sizes.

In [18], the authors conducted a comprehensive study of 14 primality algorithms, including both

deterministic and probabilistic tests. They found that deterministic tests were very slow, so probabilistic

algorithms were more suitable for real-world applications. However, there is a chance of failure for

probabilistic algorithms in certain situations. The authors concluded that the LLR method is the most

effective deterministic primality test, while the Miller-Rabin algorithm is the most effective probabilistic

primality test.

The authors of [19] provide theoretical and practical justifications for why the Miller-Rabin primality test

requires improvements. They present alternative, more effective approaches for testing primality using

Miller-Rabin probability error reduction estimations.

In [20], a comprehensive examination of various primality testing methods is presented, along with details

on their characteristics, capabilities, limitations, and time complexities. The tests are divided into four

subcategories: deterministic, heuristic, monte-carlo randomized, and las vegas randomized. Additionally,

eleven of the algorithms are implemented in both Java and Python to assess their effectiveness. The findings

reveal that no single primality test is appropriate for all situations and number formats. Thus, it is necessary to

choose the appropriate algorithm from among these methods for each instance.

The analysis shows that the Rabin-Milner algorithm is the best probability-based algorithm for checking

the numbers for primality. But there will be false witnesses in this method, too.

II. AN IMPROVED RABIN-MILNER ALGORITHM

As mentioned above, the Rabin-Milner algorithm treats some complex numbers as prime numbers, which

affects the reliability of cryptographic algorithms. Below is an improved Rabin-Milner algorithm that uses a

recursive function to solve this problem.

A recursive function (Latin recursio - return) is a numeric function of a numeric argument, which is used

in the form of the function itself. That is, 𝑓(𝑛 − 1), 𝑓(𝑛 − 2), . .. are used to calculate 𝑓(𝑛). To complete the

calculation for an arbitrary 𝑛, it is required that the function value for some 𝑛 be determined without

recursion (for example, for 𝑛 = 0, 1).
An example of a recursive function is the n-counter of the Fibonacci number:

𝐹 = {
𝐹(0) = 1;
𝐹(1) = 1;

𝐹(𝑛) = 𝐹(𝑛 − 1) + 𝐹(𝑛 − 2), 𝑛 > 1.

Using this formula, you can find the value of 𝐹(𝑛) in a finite step for any natural number 𝑛. In this case, to

find the desired value, it is necessary to calculate the values 𝐹(𝑛 − 1), 𝐹(𝑛 − 2), … , 𝐹(2).

For any number 𝑛 to be prime, the following factorial-recursive function can be expressed for any number

a taken in the interval from one to 𝑛 − 1:

𝐷𝑘 = 𝐷𝑘 + (𝑘 + 𝑎) ∗ (1 + 𝐷𝑘 ∗ 𝑏)𝑚𝑜𝑑 𝑛,
here:

𝐷𝑘=𝑎 = 𝑎;

https://zienjournals.com/

Texas Journal of Engineering and Technology ISSN NO: 2770-4491
https://zienjournals.com Date of Publication:24-03-2023
__

Peer Reviewed International Journal [36]
Volume 18

𝑘 is recursion step, from 𝑘 = 𝑎 to 𝑛;

𝑎 = {𝑥: 𝑥 = 1, 𝑛 − 1}, an element of a finite set;

𝑏 is the computing base, an integer in the interval [1, 𝑛 − 1];
𝐷𝑘 is the value of the recursive function of the factor in 𝑘-steps.

The algorithm of a factorial recursive function is as follows:

Input: 𝑎 - element and 𝑛 - module values, 𝑘 -
number of steps.

Output: the value of the recursive function of the

𝐷𝑘-factor in 𝑘 steps.

1. 𝑗 ← 1, 𝐷1 ← 𝑎.

2. When the condition (𝐷𝑘 ≠ 𝑛 − 1 || 𝑗 ≠ 𝑘) is

satisfied, do the following:

2.1. 𝐷1𝑗 ← 𝐷𝑗 + 1, 𝑎1 ← 𝑗 + 𝑎, 𝐷2𝑗 ←

𝐷1𝑗 ∗ 𝑎1, 𝐷𝑗+1 ← 𝐷𝑗 + 𝐷2𝑗;

2.2. 𝐷𝑗+1 ← 𝐷𝑗+1𝑚𝑜𝑑 𝑛

2.3. 𝑗 + +

3. Return 𝐷𝑗 .

In the factorial-recursive function table, since the cells related to factors n occupy a relatively large area

when n is a complex number, using such a function in advanced algorithms allows you to speed up the

determination of the complexity of the number being checked. Also, when the number being checked is a

prime number, it greatly increases the number of witnesses to its prime number, resulting in a lower

probability of committing an error.

The Rabin-Miller algorithm can be improved based on this algorithm for computing the recursive function

[21].

Input: Choose 𝑛 ≥ 3 odd integers, 𝑎-random

number satisfying the condition 2 ≤ 𝑎 ≤ 𝑛 −
2, and recursion step 𝑘.

Чиқиш: Is 𝑛 prime? the answer to the

question is "prime" or "complex"..

1. It is written in the form 𝑛 − 1 = 2𝑠 ∗ 𝑟,

where 𝑟- is odd number.

2. 𝑦 = 𝑎𝑟𝑚𝑜𝑑 𝑛 is calculated..

3. Go to next iteration if 𝑦 = 1 or 𝑦 =
𝑛 − 1.

4. 𝑠 − 1 times 𝑦 = 𝑦2 𝑚𝑜𝑑 𝑛 is

calculated.

4.1. If 𝑦 = 1, then the answer

should be “complex”.

4.2. If 𝑦 = 𝑛 − 1 then:

4.2.1. Do the following until (𝐷𝑗 ≠

𝑛 − 1 ∥ 𝑗 ≠ 𝑘) is satisfied:

4.2.2. 𝐷1 = 𝑎; 𝑗 = 1;

4.2.3. 𝐷1 j 𝐷 j + 1, 𝑎1 𝑗 +

𝑎, 𝐷2 j 𝐷1 j 𝑎1,

4.2.4. 𝐷 1j+ 𝐷 j + 𝐷2 j 𝑚𝑜𝑑 𝑛.

4.2.5. 𝑗 + +.

https://zienjournals.com/

Texas Journal of Engineering and Technology ISSN NO: 2770-4491
https://zienjournals.com Date of Publication:24-03-2023
__

Peer Reviewed International Journal [37]
Volume 18

4.2.6. 𝑎 = 𝐷𝑗

5. Return 𝐷 j .

The improved algorithm, compared to the existing algorithm, notices earlier when n is a complex number,

which significantly reduces the number of "false witnesses".

Conclusion

Probabilistic algorithms are more practical for most applications since deterministic tests are very slow.

Nonetheless, these algorithms may not always provide accurate results, so it is important to strike a balance

between the efficiency of the algorithm and the correctness of the generated results. In fact, the Miller-Rabin

algorithm has been identified as the most efficient probabilistic primality test according to reference [6].

When generating prime numbers using algorithms, there is always a probability involved in determining

whether a number is prime or not. To determine this, test algorithms are used, which rely on the number of

"prime witnesses" that they find. In other words, the more "prime witnesses" a test algorithm finds, the higher

the probability that the number being tested (𝑛) is actually prime.

References

1. Горбенко И., Вервейко В. Тестирование чисел на простоту: теория и практика. – 2003.

2. Nagell, T. (2021). Introduction to number theory (Vol. 163). American Mathematical Soc.

3. Adleman L. M., Huang M. D. Algorithmic Number Theory First International Symposium, ANTS-I

Ithaca, NY, USA, May 6–9, 1994 Proceedings //Conference proceedings ANTS. – 1994. – С. 292.

4. N. Y. Myzdrikov et al., “Modification and optimization of solovey-strassen’s fast exponentiation

probablistic test binary algorithm,” in 2019 IEEE East-West Design and Test Symposium, EWDTS

2019, 2019, doi: 10.1109/EWDTS.2019.8884469.

5. Robert, Solovay., Volker, Strassen. "A Fast Monte-Carlo Test for Primality." SIAM Journal on

Computing, 6 (1977).:84-85. doi: 10.1137/0206006.

6. C.-L. Duta, L. Gheorghe, and N. Tapus, “Duta, C.-L., Gheorghe, L., & Tapus, N. (2015). Framework

for evaluation and comparison of primality testing algorithms. Proceedings - 2015 20th International

Conference on Control Systems and Computer Science, CSCS 2015, 483–490.

https://doi.org/10.1109/C,” in Proceedings - 2015 20th International Conference on Control Systems

and Computer Science, CSCS 2015, 2015, pp. 483–490, doi: 10.1109/CSCS.2015.153.

7. K. Conrad, “The Miller–Rabin Test,” Univ. Connect., pp. 1–17, 2016, [Online]. Available:

http://www.math.uconn.edu/~kconrad/blurbs/ugradnumthy/millerrabin.pdf.

8. M. O. Rabin, “Probabilistic Algorithms”, in Academic Press, Algorithms and Complexity, New

Directions and Recent Results, 1976, pp. 21-24.

9. R. Baillie, S.W. Jr. Wagstaff, “Lucas Pseudoprimes”, in Math. Comput. vol 35, 1980, pp. 1391-1417.

10. Grau J., Oller-Marcén A., Sadornil D. A primality test for 𝐾𝑝ⁿ+ 1 numbers //Mathematics of

Computation. – 2015. – Т. 84. – №. 291. – С. 505-512.

11. Buchmann, Johannes, and Volker Müller. "Primality testing." (1992).

12. Louis Monier. Evaluation and comparison of two efficient probabilistic primality-testing algorithms.

Theoretical Computer Science, 12(1):97–108, 1980.

13. R. Schoof, “Four primality testing algorithms”, in Algoritmic Number Theory, vol. 44, 2008, pp.

101-126.

14. Ishmukhametov, S., and B. Mubarakov. "On practical aspects of the Miller-Rabin primality test."

Lobachevskii Journal of Mathematics 34.4 (2013): 304-312.

15. R. M. Canfield, “Three Primality Tests and Maple Implementation”, available at

https://getd.libs.uga.edu/pdfs/canfield_renee_m_200805_ma.pdf (Last Accessed: February 2015).

https://zienjournals.com/
http://www.math.uconn.edu/~kconrad/blurbs/ugradnumthy/millerrabin.pdf

Texas Journal of Engineering and Technology ISSN NO: 2770-4491
https://zienjournals.com Date of Publication:24-03-2023
__

Peer Reviewed International Journal [38]
Volume 18

16. M. Perrenoud, “Randomized and Deterministic Primality Testing”, available at

http://algo.epfl.ch/_media/en/projects/bachelor_semester/

randomized_and_deterministic_primality_testing.pdf (Last Accessed: February 2015).

17. Masle, W. Luk, C. A. Moritz, “Parametrized Hardware Arhitectures for the Lucas Primality test”, in

Proceedings of International Conference on Embedded Computer Systems (SAMOS), 2011, pp. 124-

131.

18. L. Duta, L. Gheorghe and N. Tapus, "Framework for Evaluation and Comparison of Primality

Testing Algorithms", Proc. 20 th Int. Conf. on Control Systems and Computer Science Bucharest ,

pp. 483-490, 2015.

19. Ishmukhametov, S. T., Rubtsova, R., & Savelyev, N. (2018). The Error Probability of the Miller–

Rabin Primality Test. Lobachevskii Journal of Mathematics, 39(7), 1010–1015.

doi:10.1134/s1995080218070132

20. AbuDaqa A., Abu-Hassan A., Imam M. Taxonomy and Practical Evaluation of Primality Testing

Algorithms //arXiv preprint arXiv:2006.08444. – 2020.

21. Ahmedova O.P., Mardiyev U.R., Karimov A.A., Tursunov O.O. Advanced Probabilistic Primality

Test Using by Recursive Function. International Journal of Advanced Science and Technology Vol.

29, No.4, (2020), pp.8839 –8849

https://zienjournals.com/

