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Introduction  

There are various ways or algorithms to check if a number is a prime number. Some algorithms are 

specific to numbers with certain properties or structures, while others can be applied to any number. The 

algorithms that work for any number are highly useful both in theory and in practice. Generally, all primality-

testing algorithms can be grouped into three major categories [1]: 

• One-way error probabilistic algorithms; 

• probabilistic runtime algorithms; 

• deterministic algorithms. 

Although exact tests return, a definite answer about whether a number is prime or not, these types of tests 

are rarely used in practice because they are slow because of the complexity of the algorithm. 

Probabilistic tests - the result of this test is true with a fairly high probability. Repeating them multiple 

times with different parameters for the same number makes the probability of error quite small. 

The methods used to determine whether a number is prime or not can be categorized into different classes 

based on their execution complexity: 

• An algorithm is called continuous if its complexity value does not depend on the size of the initial 

value, i.e., O(1); 

• An algorithm is called linear if its order of complexity is 𝑂(𝑛); 

• Exponential rank algorithms - an estimate of the complexity level 𝑂(𝑐^(𝑙𝑜𝑔 𝑛)) for some constant 

𝑐 > 1; 

• Subexponential level algorithms - complexity level estimate 𝑂(𝑐(log 𝑛)𝛾(log log 𝑛)1−𝛾
) for any 

constant 𝑐 > 1 and 0 <  < 1; 

• Polynomial algorithms - complexity estimate 𝑂(𝑙𝑜𝑔𝑐𝑛) for some constant𝑐1. 

Probabilistic algorithms with one-sided error -Historically, the first one-way error probability algorithms 

were algorithms with polynomial execution complexity. 

Algorithms whose execution time is probabilistic - The next important step in the development of 

primality testing is related to the emergence of algorithms whose execution time is a polynomial time 
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probability. Algorithms belonging to this class are elliptic curve tests (ECC). Algorithms of this type have 

very high polynomial complexity, due to which they are not used in practice. 

Deterministic algorithms - Deterministic algorithms for checking integers for prime numbers have been 

around for more than two thousand years. One of the earliest algorithms we know is Eratosthenes' algorithm, 

which determines a prime number by dividing it by the prime numbers preceding it. In general, it is enough to 

check that 𝑃𝑖 ≤ ⌊√𝑛⌋ is divisible by all prime numbers. This algorithm is also called the trial division 

algorithm. 

Algorithms of this type make an explicit decision as to whether the incoming value is prime or complex. 

However, such algorithms are impractical because they require large computational registers for very large 

numbers. 

In practical applications, tests that have a higher degree of polynomial complexity are employed. 

 

Main Part 

A. Fermat primality test 

The tiny Fermat theorem-based algorithm is the first of these class of algorithms. This test procedure is 

based on the theorem proposed by renowned French mathematician Pierre Fermat, known as the "little ferme 

theorem" in the 17𝑡ℎ century [2]. 

If 𝑛 is a prime, then, according to Fermat’s small theorem, the equation 𝑎𝑛−1 ≡ 1 (𝑚𝑜𝑑 𝑛) holds, where 𝑎 

is arbitrary and 𝑛 is not divisible by 𝑎. The fulfilment of the equation 𝑎𝑛−1 ≡ 1 (𝑚𝑜𝑑 𝑛) is a necessary and 

sufficient condition for determining the primality of a given number 𝑛. That is, if 𝑎𝑛−1 ≠ 1 (𝑚𝑜𝑑 𝑛)  for any 

𝑎, then 𝑛 is a complex number, otherwise, it is difficult to say anything definite, but the probability of the 

number increases. If the comparison 𝑎𝑛−1 ≡ 1 (𝑚𝑜𝑑 𝑛) is performed for a complex number 𝑛, then the 

number 𝑛 is called pseudo-prime based on 𝑎. 

However, when the number 𝑛 is complex, 𝑎 is found such that the comparison 𝑎𝑛−1 ≡ 1 (𝑚𝑜𝑑 𝑛)  is not 

performed, such a number 𝑎 is called evidence of the complexity of the number 𝑛, and the previous number 

𝑎, which made the comparison, is called a “false witness” of primality 𝑛. 

Consequently, when testing a number for prime according to the Ferm theorem, the number 𝑎 is chosen. 

𝑎𝑛−1 ≡ 1 (𝑚𝑜𝑑 𝑛) the larger the number 𝑎 that satisfies the condition, the more likely that the number n is 

prime. But there are complex numbers 𝑛 such that for 𝑎𝑛−1 ≡ 1 (𝑚𝑜𝑑 𝑛) the comparison holds in an 

arbitrary number 𝑎, which is prime with 𝑛. Such numbers are called Carmichael numbers. The set of 

Carmichael numbers is an infinite set, the smallest of which is 𝑛 = 561 = 3 ∙ 11 ∙ 17. In spite of this, the 

Ferma test is effective in determining composite numbers [3]. The Time complexity of this test is 

𝑂(𝑘 𝑙𝑜𝑔𝑛)3. 

Input: An odd integer number 𝑛 ≥ 3 and hidden 

parameter 𝑡 ≥ 𝑙; 
Output: “is 𝑛 prime?” the answer shoul be 

“prime” or “complex”. 

1. for 𝑖 = 1 to 𝑡 do the following: 

1.1. randomly selected the number 𝑎, 

satisfying condition  2 ≤ 𝑎 ≤ 𝑛 − 2; 

1.2. Calculated 𝑟 = 𝑎𝑛−1; 

1.3. If (𝑟 = 1), then returns a "complex 

number"; 

Returns “prime number” [4]. 

Fermat's theorem suggests that, when checking for primality, several numbers of a should be selected. The 

more numbers of a that satisfy the condition 𝑎𝑛−1 ≡ 1 (𝑚𝑜𝑑 𝑛), the higher the likelihood that n is a prime 

number. However, there are n complex numbers for which the comparison 𝑎𝑛−1 ≡ 1 (𝑚𝑜𝑑 𝑛) is performed 

for any prime number a that is coprime with n. These numbers are known as Carmichael numbers. The 

Carmichael number set is an infinite set, and the smallest known Carmichael number is 𝑛 =  561 =  3 ∙
 11 ∙  17. Nevertheless, the Fermat test remains an effective way of determining primes. 
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B. Solovay–Strassen primality test 

Another primality-testing algorithm in this category is the Solovay-Strassen test, which always correctly 

detects prime numbers but may give a wrong answer with a certain probability for composite numbers. The 

primary advantage of this test is that it can identify Carmichael numbers as composite, which the Fermat test 

cannot do.  

The essence of the test is to test not every number in the entire sequence, but a random set of each random 

number for 𝑘 times. This algorithm based on Fermat's little theorem. 

If p–simple number, and 𝑎 − 𝑎𝑛 integer that is mutually prime with 𝑛, so: 𝑎𝑛−1 ≡ 1(𝑚𝑜𝑑 𝑛). 

In this case, the Jacobi symbol is used to define the Carmichael numbers. 

(
𝑎

𝑛
) ≡ 𝑎

𝑛−1
2 (𝑚𝑜𝑑 𝑛) 

where (
𝑎

𝑛
)–Jacobi symbol, called witness of primality 𝑛 [4]. 

This test uses the Euler criterion. It is known that according to the Euler criterion, if 𝑎(𝑛−1)/2 = (
𝑎

𝑛
) 𝑚𝑜𝑑 𝑛 

condition is satisfied for all witnesses of prime numbers 𝑎 that do not have the greatest common divisor with 

𝑛, then n is an odd number of prime numbers. 

That is, this algorithm focuses on the elements 1 and −1, which are formed in the column corresponding 

to the "prime witnesses" 𝑎, which are mutually simple with 𝑛 in the (𝑛 − 1)/2 row of the table of levels of 

prime numbers [5]. 

If at the end of the test witnesses, the prime number 𝑛 has been discovered as much as iterations 𝑘, the 

number 𝑛 is probably simple, with a probability 1 − 2−𝑘.  Odd 𝑛 satisfying the test condition and not being 

prime is called pseudo-simple Euler numbers at the base 𝑎 [6c]. The complexity value of this test is 

𝑂(𝑙𝑜𝑔3р). 

The Fermat and Solovay-Strassen tests rely on translating a congruence modulus of primes, or Fermat's 

little theorem, or Euler's congruence into a set of composite numbers and hoping it will fail there. 

C. Miller-Rabin primality test 

The Rabin-Miller test is one of the probabilistic primality tests based on the strong concept of 

pseudoprimality. 

The test algorithm developed by Michael Rabin, based in part on the ideas of Jerry Miller, is now widely 

used in the design of public key cryptosystems. This algorithm is recognized as a powerful algorithm for 

testing pseudo prime numbers. Miller-Rabin is a polynomial-time algorithm with a time complexity of 

𝑂(𝑘 𝑙𝑜𝑔𝑛)3. 

As in the Fermat and Solovay–Strassen tests, we are using the term “witness” to mean a number that 

proves n is composite. An odd prime has no Miller–Rabin witnesses, so when 𝑛 has a Miller–Rabin witness it 

must be composite [7]. 

It is based on the representation of 𝑝 − 1in the representation 2𝑠 ∗ 𝑟. Where 𝑠 is the number of divisions of 

𝑝 − 1 by two, 𝑟 is an odd number. The Rabin-Miller algorithm is based on the following definition [8]. 

Definition. Suppose 𝑝 is an odd composite integer, and 𝑝 − 1 = 2𝑠 ∗ 𝑟, where 𝑟 is an odd number. If 𝑎𝑟 ≠

1 (𝑚𝑜𝑑 𝑝) and all 𝑗, 0 𝑗   𝑠 − 1, 𝑎2𝑗𝑟 ≠ −1, then for 𝑝, 𝑎 is called a "strong witness" (composite). 

Otherwise, if 𝑎𝑟 = 1 (𝑚𝑜𝑑 𝑝) or for all 0 𝑗   𝑠 − 1, 𝑎2𝑗𝑟 ≠ −1, then 𝑝, 𝑎 is called the number of the 

"strong pseudo-prime" according to the basis a. An integer a is called a "strong liarwitness" number for p. 

The probability of a test error does not exceed 2−2 for a single value of 𝑥, and if the test is repeated 𝑘 

times for different values of 𝑥, the probability of error decreases to 2−2𝑘. Numbers that satisfy this condition 

but are not prime are called x-based strong pseudoprime numbers. The complexity of this test is 𝑂(𝑙𝑜𝑔3𝑝). In 

the figure below, the prime number generation time represents the dependence of the number of bits. 

D. Lucas primality test 

The Lucas test was developed on the Lucas side in 1891, an algorithm for determining the numbers (not 

just the Mersen and Farm numbers) for the primality, based on the probability used to determine the 

primality. 

https://zienjournals.com/


Texas Journal of Engineering and Technology                                                                               ISSN NO: 2770-4491 
https://zienjournals.com                                                                                                 Date of Publication:24-03-2023 
________________________________________________________________________________________________________________________________ 

___________________________________________________________________________________________________________________________________________ 

Peer Reviewed International Journal                                                                                                                                  [34] 
Volume 18 

According to the algorithm, an input value 𝑛 is called prime if for any prime 𝑞, which is a divisor of 𝑛 −

1, there exists 𝑎 such that 𝑎𝑛−1 ≡ 1 (𝑚𝑜𝑑 𝑛) and 𝑎(𝑛−1) 𝑞⁄ ≠ 1 (𝑚𝑜𝑑 𝑛), if the conditions are satisfied. This 

algorithm requires that the prime divisors of n-1 are known. At present, there is no known complex number 

that does not pass a certain number of Rabin-Miller and Lucas tests [9]. 

E. Proth primality test 

Proth theorem is a probabilistic algorithm that is used to test numbers for primality of a certain kind. This 

test usually tests numbers of the form 𝑘 ∗ 2𝑛 + 1, where k is an odd integer such that 𝑘 < 2𝑛. A number 𝑝 is 

called a prime number if the condition 𝑎(𝑝−1) 2⁄ ≡ −1 (𝑚𝑜𝑑 𝑝) holds for such an integer 𝑎. Prime numbers 

of this type are called Prot prime numbers. Prot's theorem quickly determines whether a number is prime or 

not. However, it is very slow in determining whether a given number is composite(it is necessary to check 

every number from 2 to n). This algorithm is recommended for finding prime numbers within a certain range 

[10]. The time complexity of Proth test is 𝑂((𝑘 𝑙𝑜𝑔𝑘 +  𝑙𝑜𝑔𝑛) 𝑙𝑜𝑔𝑛). 

F. Pocklington primality test 

The Pocklington test, developed by Pocklington and Lammer, determines whether an incoming prime 

number can be identified. An input number N is prime if, for any prime number q, which is a divisor of 

number N-1, there exists an integer a such that 𝑎𝑁−1 ≡ 1 (𝑚𝑜𝑑 𝑁) and gcd(𝑎(𝑁−1) 𝑞⁄ − 1, 𝑁) = 1. This 

algorithm requires that the prime divisors of N-1 are known [11]. 

Table 1. Below is an analysis of probabilistic algorithms for checking numbers for primality. 

Name of test Advantage Disadvantage Complexity 

Fermat 
- Very simple to implement. 

- Base for many tests. 

-Failure probability may reach 1. 

-Pseudoprime can pass the test. 
𝑂 (𝑘 log 𝑛)3 

Solovay 

Strassen 

Pseudoprimes are successfully 

announced as composites. 

- an Euler pseudoprime can pass the 

test. 

- Computation of Jacobi symbol adds 

more computation overhead. 

𝑂 (𝑘 log 𝑛)3 

Miller-Rabin 

- Fast & efficient. 

- Euler Pseudoprimes are 

successfully announced as 

composites. 

Strong pseudoprimes can pass the 

test. 

𝑂 (𝑘 log 𝑛)3 

Pocklington 
Very efficient if there is a factor 

𝑞 > √𝑛 − 1 

Prime factors of 𝑛 − 1are required to 

be already known. 

𝑂 (𝑙𝑛𝑙𝑛 𝑛) 

Lucas 
Valid for any generic or special 

form numbers. 

- Prime factors of 𝑛 − 1are required 

to be already known. 

- Worst case scenario may take long 

time. (if n is composite, this test may 

not terminate). 

𝑂 (𝑝2  log𝑝 𝑛) 

Proth 
Very fast and reliable test to decide 

about proth number. 

Working well only with proth 

numbers. 

𝑂 ((𝑘 log 𝑘
+ log 𝑛) log 𝑛) 

 

G. Releated Work 

The authors of [12] conducted an analysis of the Miller-Rabin and Solovay-Strassen tests, which are based 

on probabilistic testing. They concluded that the Miller-Rabin test is highly effective. This analysis was 

carried out using a mathematical model. 

In reference [13], the authors conducted an analysis of the Miller-Rabin probabilistic test, the deterministic 

AKS test, and an elliptic curve test. Based on their analysis, they concluded that the Miller-Rabin test is the 

most effective, while the latter two tests are typically used in practice. They also provided mathematical 

evidence to demonstrate the superiority of the Miller-Rabin test over the Solovay-Strassen test. 

The authors of [14] conducted a study on the correlation between the length of test numbers and the 

number of Miller-Rabin rounds required to obtain an accurate result. They also provided suggestions for 
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selecting a suitable set of bases that can improve the efficiency of Miller-Rabin. The paper ends with a 

discussion on several theoretical issues that can enhance the implementation of Miller-Rabin. 

In [15], the author discusses the Solovay-Strassen, Miller, and AKS primality tests and presents results 

from implementing these methods using Maple. The study aimed to determine the number of steps required 

for numbers of varying sizes (ranging from 4 to 12 digits) and to assess the results obtained. 

The article [16] provides C++ implementations of several randomized and deterministic primality tests, 

including Miller-Rabin, Fermat, Solovay-Strassen, and AKS. The author proves several theorems to help 

understand these algorithms and provides explanations of the necessary concepts from number theory. While 

the author provides a brief overview of primality tests, they focus on the AKS test and compare its 

effectiveness to Fermat's test. 

The paper published in [17] describes the implementation of the Lucas probabilistic primality test and 

focuses on developing a hardware architecture that is suitable for this test. The effectiveness of this algorithm 

was evaluated for numbers of different sizes. 

In [18], the authors conducted a comprehensive study of 14 primality algorithms, including both 

deterministic and probabilistic tests. They found that deterministic tests were very slow, so probabilistic 

algorithms were more suitable for real-world applications. However, there is a chance of failure for 

probabilistic algorithms in certain situations. The authors concluded that the LLR method is the most 

effective deterministic primality test, while the Miller-Rabin algorithm is the most effective probabilistic 

primality test. 

The authors of [19] provide theoretical and practical justifications for why the Miller-Rabin primality test 

requires improvements. They present alternative, more effective approaches for testing primality using 

Miller-Rabin probability error reduction estimations. 

In [20], a comprehensive examination of various primality testing methods is presented, along with details 

on their characteristics, capabilities, limitations, and time complexities. The tests are divided into four 

subcategories: deterministic, heuristic, monte-carlo randomized, and las vegas randomized. Additionally, 

eleven of the algorithms are implemented in both Java and Python to assess their effectiveness. The findings 

reveal that no single primality test is appropriate for all situations and number formats. Thus, it is necessary to 

choose the appropriate algorithm from among these methods for each instance. 

The analysis shows that the Rabin-Milner algorithm is the best probability-based algorithm for checking 

the numbers for primality. But there will be false witnesses in this method, too. 

II. AN IMPROVED RABIN-MILNER ALGORITHM 

As mentioned above, the Rabin-Milner algorithm treats some complex numbers as prime numbers, which 

affects the reliability of cryptographic algorithms. Below is an improved Rabin-Milner algorithm that uses a 

recursive function to solve this problem. 

A recursive function (Latin recursio - return) is a numeric function of a numeric argument, which is used 

in the form of the function itself. That is, 𝑓(𝑛 − 1), 𝑓(𝑛 − 2), . ..  are used to calculate 𝑓(𝑛). To complete the 

calculation for an arbitrary 𝑛, it is required that the function value for some 𝑛 be determined without 

recursion (for example, for 𝑛 = 0, 1 ). 
An example of a recursive function is the n-counter of the Fibonacci number: 

𝐹 = {
𝐹(0) = 1;
𝐹(1) = 1;

𝐹(𝑛) = 𝐹(𝑛 − 1) + 𝐹(𝑛 − 2),   𝑛 > 1.
 

Using this formula, you can find the value of 𝐹(𝑛) in a finite step for any natural number 𝑛. In this case, to 

find the desired value, it is necessary to calculate the values 𝐹(𝑛 − 1), 𝐹(𝑛 − 2), … , 𝐹(2). 

For any number 𝑛 to be prime, the following factorial-recursive function can be expressed for any number 

a taken in the interval from one to 𝑛 − 1: 

𝐷𝑘 = 𝐷𝑘 + (𝑘 + 𝑎) ∗ (1 + 𝐷𝑘 ∗ 𝑏)𝑚𝑜𝑑 𝑛, 
here: 

𝐷𝑘=𝑎 = 𝑎; 
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𝑘 is recursion step, from 𝑘 = 𝑎 to 𝑛; 

𝑎 =  {𝑥: 𝑥 =  1, 𝑛 − 1}, an element of a finite set; 

𝑏 is the computing base, an integer in the interval [1, 𝑛 − 1]; 
𝐷𝑘 is the value of the recursive function of the factor in 𝑘-steps. 

The algorithm of a factorial recursive function is as follows: 

Input: 𝑎 - element and 𝑛 - module values, 𝑘 - 
number of steps. 

Output: the value of the recursive function of the 

𝐷𝑘-factor in 𝑘 steps. 

1. 𝑗 ← 1,  𝐷1 ← 𝑎. 

2. When the condition (𝐷𝑘 ≠ 𝑛 − 1 || 𝑗 ≠ 𝑘) is 

satisfied, do the following: 

2.1.  𝐷1𝑗 ← 𝐷𝑗 + 1, 𝑎1 ← 𝑗 + 𝑎, 𝐷2𝑗 ←

𝐷1𝑗 ∗ 𝑎1, 𝐷𝑗+1 ← 𝐷𝑗 + 𝐷2𝑗; 

2.2. 𝐷𝑗+1 ← 𝐷𝑗+1𝑚𝑜𝑑 𝑛 

2.3. 𝑗 + + 

3. Return 𝐷𝑗 . 

In the factorial-recursive function table, since the cells related to factors n occupy a relatively large area 

when n is a complex number, using such a function in advanced algorithms allows you to speed up the 

determination of the complexity of the number being checked. Also, when the number being checked is a 

prime number, it greatly increases the number of witnesses to its prime number, resulting in a lower 

probability of committing an error. 

The Rabin-Miller algorithm can be improved based on this algorithm for computing the recursive function 

[21]. 

Input: Choose 𝑛 ≥ 3 odd integers, 𝑎-random 

number satisfying the condition 2 ≤ 𝑎 ≤ 𝑛 −
2, and recursion step 𝑘. 

Чиқиш: Is 𝑛 prime? the answer to the 

question is "prime" or "complex".. 

1. It is written in the form 𝑛 − 1 = 2𝑠 ∗ 𝑟, 

where 𝑟- is odd number. 

2. 𝑦 = 𝑎𝑟𝑚𝑜𝑑 𝑛 is calculated.. 

3. Go to next iteration if 𝑦 = 1 or  𝑦 =
𝑛 − 1.  

4. 𝑠 − 1 times 𝑦 = 𝑦2 𝑚𝑜𝑑 𝑛 is 

calculated.  

4.1. If 𝑦 = 1, then the answer 

should be “complex”. 

4.2. If 𝑦 = 𝑛 − 1 then: 

4.2.1. Do the following until (𝐷𝑗 ≠

𝑛 − 1 ∥ 𝑗 ≠ 𝑘) is satisfied: 

4.2.2. 𝐷1 = 𝑎; 𝑗 = 1; 

4.2.3. 𝐷1 j 𝐷 j + 1,    𝑎1 𝑗 +

𝑎,   𝐷2 j 𝐷1 j 𝑎1, 

4.2.4.  𝐷 1j+ 𝐷 j + 𝐷2 j 𝑚𝑜𝑑 𝑛. 

4.2.5.  𝑗 + +. 
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4.2.6. 𝑎 = 𝐷𝑗  

5. Return 𝐷 j . 

The improved algorithm, compared to the existing algorithm, notices earlier when n is a complex number, 

which significantly reduces the number of "false witnesses". 

 

Conclusion 

Probabilistic algorithms are more practical for most applications since deterministic tests are very slow. 

Nonetheless, these algorithms may not always provide accurate results, so it is important to strike a balance 

between the efficiency of the algorithm and the correctness of the generated results. In fact, the Miller-Rabin 

algorithm has been identified as the most efficient probabilistic primality test according to reference [6]. 

When generating prime numbers using algorithms, there is always a probability involved in determining 

whether a number is prime or not. To determine this, test algorithms are used, which rely on the number of 

"prime witnesses" that they find. In other words, the more "prime witnesses" a test algorithm finds, the higher 

the probability that the number being tested (𝑛) is actually prime. 
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