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On Generalized Derivations Of Jordon Algebras
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Annotation.In the present article the concept of generalized derivations of Jordan algebras is introduced
and the general properties of generalized derivations are studied. In particular, invariants are constructed in
Jordan algebras using generalized derivations. Also, a description, for some values of the parameters a, B, v,
of the sets of all (a, B,y) -derivations of Jordan algebrasis given.
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1-olimiting. Jordanov's algebra is - I satisfy Jitsconditions
ab=ba,abel,

(a?b)-a=a?*(ba),abe].
Jx] = ] — linear reflection of vector space over a field V F

The definition - differentiation of Jordan algebras (a, B, 7/) can be written as follows:

2-0 limiting. Let Jordanov's algebra. (J, -)—

A linear operator is calledd eEnd(J)J (e, B,v)— a differentiation if for all elements there are such ,
X,y € Ja, B, yeCwhich fulfills the following condition

ad(xy) = fd(x)¥) + x-d()).

Sets of all jordan differentiations(a, 8, y)-Jyx algebras denote by Der(, g,(J). This set is determined
by the following:

Der(a,ﬁ,y)(]) = {d eEnd(J): ad(xy) = f(d(x)y) + y(x-d(y)),x,ye]}.

Where the set is a subspace of the vector space Der 4 g,y (J)End(J) .

Theorem. Let be a Jordanian algebra with a unit/—ym element and ¢, S, y<F. Then the vector space
has the followingDer 4 g,,)(J/)formy.

1., Der¢y1,1)(J) = Der(J)where the Lie algebra of all differentiations of Jordan algebrasDer(J)-y ; J
2. Sets andDer(4,1,0y(J)End(L)Der(1,1,0)(J)
it is possibleto identically equalize all the idempotent elements of the Jordan algebra Id (J)
peld()), dix)=px, xeg
3. Der(y,1,-1)(J)=Der(10)(J)=0.

4. .Der(ojl,l) U)EO
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5. The set can be identically equalDer g 1 —1y(J))to the set Z,(J) = {a e/ | (b-a)c =b-(ac), b,cel}
acZ,(]), d(x) =ax, x¢g.

6. 0;Dero1,0)()=

7. Esli 6#1, thenDer(51,0)(J)=0 .

Proof. From equality d(x-y) = d(x)y,x,ye] we get. d(x) = d(e)x, xeJThen, since Zhordanov's
algebra is commutative, J

dixy) =d(e)(xy) =dx)y =d¥)x, xyel
and
d(xy) =d(xe)y = (de)x)y = (de)y)x, xye].
Henced (e)-the central element. As well as
d(e) =d(ee) =d(e)d(e),
i.e. the element is idempotentd (e)yy element.
Conversely , for each central idempotent element of the Jordan algebraspy |
Reflection belongs to the setand d(x) = px, x¢&/,Der(y1,0)(J)

va therefore, the sets can be identically aligned with the multiplicity of all the idempotent elements of the
Jordan algebra .Der 1 0)(J)]

3. By definition Der ;-1 (J) = {deEnd(])|d(x'y) =d(x)y—xd(y), x,ye/} . There is a
followingequality:

dix) =d(e)x—d(x), xy¢g,
d(xy) = (d(e)x —d(x))y —x-(d(e)y —d(y)) =
(d(e)x)y —dx)y —x-(d(e)y) +xd(y) =
(d(e)x)y —x(d(e)y) —d(xy), xye],
d(e) =d(ee) =d(e)e—ed(e) =0.
Hence
d(xy) = —d(xy) =0, x,yef
and
d(ex) =—d(ex) =d(x) =0, x¢].
From the Last Equality Der(; 1 _1)(J)=0.

4. By definition, the set is defined in the followingDer 1 1)(J)way:

Der1,1)(J)) = {deEnd () | d(x)y = —x-d(¥),x,y &]}.
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Thend(e)x = —ed(x) = —d(x), xe/ ,,.d(e)e =—e-d(e)d(e) =0
Hence

dix) =ed(x)=—-d(e)x=0, x¢.
So, Der g 1,1)(J)=0.

5. As iny she, for the set you can get equals Der 1 —1)(J) = {d eEnd(J) ld(x)y = xd(¥),x,y e/}
de)x =ed(x) =d(x), x¢g,
d(x)y = (d(e)x)y = (xd(e))y = xd(y) = x-(d(e) y),x,y €.
Now from the set
Z,() ={aef | (b-a)c = b-(ac), b,cel}
let's take arbitrarilyyy elementaeZ,(J) z. Let's show that reflectiond(x) = ax, x¢gJ.
Belongs to the set Dery;,—1)(J) .
dx)y = (ax)y = (xa)y =x(ay) =xd(y), x,ye.

6. By definition, a set is defined by followingDer g 1 o) (J)it:

Der(o1,0)(J) = {deEnd(J) | d(x) vy =0,x7v€e/}.

Thereis a followingequality:

d(x) =d(x)e=0, d(e) =d(e)e=0, xej.

HenceDer (g 1,0)(J)=0.

7. And at the end , of the set

Der(s10() = {deEnd() | sd(xy) = d()y, x,yel}
you can get equality
od(x) = dd(xe) =dx)e=d(x), xegf
od(x) = d(x), (6—1)d(x) =0,6#1,d(x) =0 x¢].
Since
0=(0—-1D10=(0-1D1(o-1Ddx) = d(x).
So, Der(s51,0)(J)=0.
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