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In the middle of the 19th century the appearance of quaternions stimulated various researches in the
fields of mathematics and physics. In particular, because of quaternions, one of the important branches of
mathematics - algebra of vectors was created. It can be clearly noticed that the algebra of vectors arose after
preliminary conclusions of the theory of quaternions. The scientific works of the English mathematician W.
Hamilton, who was really the founder of the theory of quaternions, dates back to the 50s of the 19th century,
and the works of the American physicist and mathematician D. Gibbs to form the main place of vector
algebra in mathematics dates back to the 80s of the 19th century.

Quaternion - (from latin quaterni - "of four") term was proposed by the English scientist Hamilton
(1843) [1]. Below are represented the relationships between calculations on quaternions and operations on
three-dimensional space vectors.

Let's recall some concepts known to us from geometry. If we take a right-angled coordinate system
in space, and define vectors i, j, k, directed along the coordinate axis from the origin of the coordinates, and
whose length is equal to 1 (picture 1), then any sum of the form bi+cj+dk represents a certain vector. This

vector is a vector from the beginning of coordinates O to the point M with coordinates b, ¢, d .
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Any quaternion of the form g=a+ bi+cj+dk represents vector of the form bi+cj+dk and a a real
number. We call the number a the numerical (real) part of the quaternion g, and the expression bi+cj+dk is
its vector part. Now let's look at two quaternionsq1=a1+bi+ci1j+d1kandgz=a2+b2i+c2j+d 2k .

According to the rule of multiplying quaternions we get the following result [3] by multiplying them:
qi1g2=-(b1b2+cico+d1d2)+(c1d2-dic2)i+(d1b2-b1d2)j+(b1c2-c1b2)k

1)
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We write the numerical part and the vector parts of the quaternion q 1 q 2 separately :

numerical partof g1q2--(b1b2+cic2+d1d2) (2)

vector partof q1g2-(c1d2-d1c2)i+(d1b2-b1d2)j+(bic2-c1b2)k(3)
Each of the expressions (2), (3) expresses a certain geometric meaning. We show that the sum of b 1h 2 +c 1
c2+d 1d2is equal to the expression |q 1 ||q 2 |cos ¢ which determines multiplication of the modules of q 1
and q 2 quaternions and the cosine of the angle between them. Let’s consider the scalar product of qi, g2
vectors. Note that the scalar product is denoted as (qi, g2), not a vector, but a certain number. Thus,
according to the definition of the scalar product (q1.02) =|d1||gz|cose.

Let’s prove the formula (qi,gz) = bib2+cic2+did2 (4). In picture 2 a triangle constructed on g i1and g 2
of vectors is depicted. The first tip of the triangle lies at the origin of the coordinates and the other two tips
are on the points My and M2 with coordinates bi, c1,d1 and by, ¢z, da.
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Picture 2.

(Mzand M points are the tips of the g1 and q 2 vectors respectively.)

The following are known to us:

OMi?=by?+ci?+d1?, OM2?=b*+c*+d2?, MiM2? = (b1-b2)?+(c1-C2)*+(di-d2)?, after that MiM2? =
OM1%2+ OM2?-(b1ba+ciCo+d1d2). And from the theorem of cosines: MiMa? = OMi2+ OM2%-2 OM1-OM,-Cosp
where ¢ - g1 and g2 the angle between the vectors.

By equating the above expressions, we get the following expression to be proved:
OM;-OM2-cosp=nb1bo+C1Co+d10>.

Thus , the real part of the product of g: and g2 quaternions is equal to the obtained with the opposite
sign of scalar multiplication of qiand gz.

If g1 and g if the vectors are perpendicular, it is clear that their scalar product is equal to zero (
p=n/2, cos p=0), and therefore the real part of the product q: g2 is also zero. In this case qz, g2 will consist
of clean vectors. The converse of this statement is also valid, that is, if g1, g2 is a clean vector, then the scalar
product of g: and g2 is equal to 0. i and g2 are perpendicular while q: g2 =-q102 can also be seen from
formula (1).

Expressing the geometric meaning of the vector part of the product gi02 (the expression on the right
side of equation (3)) is somewhat difficult. This expression is called the vector product of the vectors g: and
gz and is denoted by [g1,92].

[01,02] =(c1d2-d1C2)i+(d1b2-b1d2)j +(bic2-C1b2)k.

The vector [g1,92 ] is perpendicular to each of the vectors g1 and g2, and its length is |g1||g2|sing or

the face of the parallelogram S constructed from the vectors g and g».
To prove the perpendicularity of the vectors [g1,02] and g, as is well known, it suffices to check that the
real part of the product of quaternions is equal to zero or that their product is a “clean” vector. But since
[a1,02] =qug2 +(qrq2) from (1) and (4), then qu[01,92]=01(Qu02+(qe.02)) =0Ar’Ge+ (Qu02) Q1 = -|quf’c
+(01.02)01.

On the right side, a vector is formed, consisting of the sum of two more vectors. The perpendicularity
of the vectors [q1,02] and g2 can be shown in the same way.
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Now let's find the length of the vector [g1,92].

Its square is equal to (Ci02-01C2)?+(d1bz-bid2)?+(b1C2-Cab2)? or  (bi?+Ci2+d1?)(b?+C2%+d7?)-
(bibo+cico+did2)? . The last expression represents |qi|?|d2]>(qz,G2)? , or by the definition of scalar product
|q1)?|02)?- |a1|?|gz|?cos?e, or |qi[?|gz|?sin?p. Therefore, the square of the length of the vector [q:,02 ] is equal
to |q1|?|gz|%sin?p, or S?, which is the statement required to be proved. The indicated properties of the vector
[01.92] , i.e., the perpendicularity of q: and gz and its length equal to S, do not completely define it. [q1,92],
g: and g2 and its length equal to S, do not completely determine it. Such properties are represented by two
mutually opposite vectors. (picture 3).

g

Picture 3.

Thus, for pure vector quaternions, the formula 102 = - (g1, 92 )+ [d1,92] is appropriate. Here, (g1, 02)
is the scalar product of gi,g2 and [qy,02] is the vector product. It can be seen from them that scalar and vector
multiplications are "pieces"” of quaternion multiplication. The operations of vector scalar multiplication and
vector multiplication belong to the section of vector algebra of mathematics that has interdisciplinary
applications in physics, mathematics itself, especially in mechanics.

Quaternion multiplication is a key tool in solving some problems of geometry and mechanics
because it combines 2 different multiplications of vectors, namely scalar and vector multiplication.
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