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Annotation. The article considers the application of the Galerkin method to the solution of boundary
value problems of parabolic type with a divergent main part, when the boundary condition contains the
time derivative of the desired function.

Such non-classical problems with boundary conditions, containing the time derivative of the desired
function, arise when studying a number of applied problems, for example, when a homogeneous
isotropic body is placed in an inductor of an induction furnace and an electromagnetic wave falls on its
surface. Such problems are little studied, so the study of problems of parabolic type, when the boundary
condition contains the time derivative of the desired function, is relevant. In this paper, we study a

generalized solution of the problem under consideration in the space HE1(Qy).. The proposed boundary
value problem is considered under certain conditions for the function involved in the equation and the
boundary condition, which allow the existence and uniqueness of the generalized solution. For the
numerical solution of the problem under consideration, an approximate solution was constructed using
the Galerkin method. The concept of stability of the Galerkin process for this problem is introduced. The
purpose of the study is to obtain a condition for the stability of the computational process of the
considered mixed problem. Using the Galerkin method under consideration, the problem is reduced to
solving a system of ordinary differential equations. Next, we consider the “perturbed” problem for the
system of the Galerkin method and obtain estimates for the difference between the solutions of the
original and perturbed systems. The article establishes the stability of the approximate solution of the
Galerkin method in the space L,(0,T,HY) of the problem under consideration, under conditions of
strong minimality of the coordinate system.

Keywords: Boundary value problem, quasilinear equation, boundary condition, Galerkin method,
generalized solution, parabolic problem, approximate solution, error estimate, monotonicity, inequalities,
time derivative, boundary, region, scalar product, norm, continuity, desired function.

Introduction. When studying a number of topical technical problems, it becomes necessary to study
mixed problems of the parabolic type, when the boundary condition contains the time derivative of the
desired function. Problems of this type arise, for example, when a homogeneous isotropic body is placed in
an inductor of an induction furnace and an electromagnetic wave falls on its surface. Some nonlinear
problems of parabolic type with a boundary condition containing the time derivative of the desired function
were considered, for example, in [1-3]. Many scientists were involved in the construction of an
approximate solution using the Galerkin method and obtaining a priori estimates of the approximate
solution for parabolic quasilinear problems without a time derivative in the boundary condition: Mikhlin
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S.G., Douglas J. Jr, Dupont T. , Dench J. E., Jr, Jutchell L. and others [4-9]. And quasi-linear problems,
when the boundary condition contains the time derivative of the desired function using the Galerkin
method, have been little studied [10-15]. In [16], the stability of the approximate solution of the Galerkin
method of the problem under consideration in the space LOO(O, T,L 2(!))) was established.

Formulation of the problem. In this paper, we consider a quasilinear problem of parabolic type, when the
boundary condition contains the time derivative of the desired function:

d
U — Eaz(x, t,u,Vu) + a(x, t,u,Vu) =0
i

aoue + a;(x,t,u,Vu) cos(v, x;) = g(x,t,u), (x,t) €S, , (1)
u(x,0) =uy(x) , x €N

rae 2 — bounded domain in E,,, m = dim — dimension of domain {2, Q; = {Q X [O,T ]},
S; = {GQX [O,T]}, a, = const >0

Definition. A generalized solution from the space HT1(Q;) = {u € H¥*(Q1): agu; € L,(S;)} of
problem (1) is a function from (H*1,1 ) (Q_T ). satisfying the identity H1(Q;)

I(utn +a,(x,t,u,Vuy, +a(xt,u, Vu)ry)dxdt +I((aout +g(ct,u)l7)xdt=0 5

vn € HY'(Qr)
Main results: Consider problem (1) under the following conditions

1) for (x,t) € O+ and arbitrary u,v, p and q inequalities

|ai(xi tu, p) - ai(xi tu, q)l Sj(lul)lp - ql
la;(x, t,u,p) — a;(x, t,v,p)| < Lo(lul + [vDlu — v
laCx, t,u,p) — alx, t,u, @)1 < [Li(lul) + Ly (Ipl? + 1qI#)]lp — ql 3)
laCx,t,u.p) —a(x,t,v,p)| < [La(lub) + D) + L (Ip*)]lu - v|
lg(x,t,u) — g(x, t, V)| < La(fJul + [vD|u —vl,
where 7i(t), L, () are continuous positive functions of t > 0.
L, L, — positive constants.
2) The boundary S of the domain Q is such that the inequalities [17-18]
ull g0y < & IVull?, g + Cellull?, o,
§=7,1>m (4)
lullLgs) < e lIVullz, @) + Cellullz, g | (%)
_ 2(m-1)
< P
3) Monotonicity condition. For any functions u, v < H?, the following inequality holds:
(a;(x, t,u,Vu) — a;(x, t,v, Vv),uxi —VUx)o
+ (a(x, t,u,Vu) —alx, t,v,Vv),u —v), =0 (6)

4) For (x,t,u) € {22 x [0,T] x E;} the function g(x, t, u) is measurable
in (x,t,u), is continuous in (t,u) and satisfies the inequality:
lg(x, t,uw) —g(x, t,v)| < golu—vl,  g(x,t,0) € Ly(Sr) (7
Let us construct an approximate solution using the Galerkin method. Let us take a coordinate system
from the space H' (). Approximate solution U(x,t) will be sought in the form [19-25]:
UGx,t) = Sy CF ()i (x) ®
where Cy(t) are determined from the system of ordinary differential equations
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(Ut' §0j)£2 + (ai(x' t,U, VU)) (pjxi)ﬂ + (a(x' t,U, vuﬂo})ﬂ:

=@t p)s, j=1n (9)
with initial conditions
(U(x,0) —ug, ¢;) yrp) =0
Here L ,(2) is the function space with inner product
(w, )i, = (W v)g + ao(u,v)s
Let us assume that the coordinate system {¢,} c H(£) is strongly minimal in the space L , (), i.e.
there exists a constant q independent of n such that 0 < g < g;", where g;" are eigenvalues of the matrix

O ={(01. @; )iz}k,,-=1
Write system (9) in vector form
Qn Ca(8) + Rp(t, Ca (1) = fu(t, Cu()) + gn(t, Ca())

) (10)
Qn Cr(0) =T,
here
R,(t,C,) = {(az(X, t,U,VU), 9ix,)a }:=17
fu(t, C) = {(a(x, t,U,VU), 9i) o3 k=1, . n
gn(t,C) = {9t V), 0)sHier, On = {(0000) ) }ik:l' T = {0, 01 1oy }kzl' Cn =

{Crlf}}:=1
n-dimensional vectors.
Let us assume that instead of the Galerkin system (10) we solve the “perturbed” system
(@n + T)Ca(®) + Ry (£, Ca(®) = gn (£:Ca(®)) + £ (£, Cal®)) + 82, ),
(11)
_ (Qn + F%) Cn(o) =T, + 4,
where C,,(t) is the solution of the perturbed problem.

Definition. The Galerkin process for problem (10) is called stable if there exist positive constants p; (i =
0,3) independent of n such that for sufficiently small matrix norms ||IT2|| |IT,|l and norms vectors
16 (t, I, 08, » 1ARlE,

the inequality

||Cn(t) - Cn(t)”En < pOHAn”En +p1 ”F%” + P2 ”Fn” +

+p3 ||?]|?<XK 16,,(t, Cr) ||L2(0,t,En) (12)

An approximate solution U(x, t) is called stable in the space L ,(£2) if an inequality similar to (12)
holds for the difference

|0, t) — U(x, t)||L2, where U(x,t) = X1, CFF () @y (x)
Using the strong minimality of the coordinate system {¢,} in L ,(£2), we obtain the inequalities

1

IC. N, < 2IUNE, =N/ (13)
EdC () 1dU)?
0 dt E‘l’l q dt L2(0,t,i 2)

Then, in inequality (13) we set K = N/q.

Let the allowed errors T',,, 6,,(t, C,,) be such that

ITAl < agq, (14)

intheball  [|C,(®)IF, < K the inequality
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Ilan(t; Cn)”zz(O,t,En) < 6CK (15)
Here z,, = C,(t) — C,(¢t).
From equation (11) we subtract equation (10). We multiply the resulting equation scalarly by the vector

Zn(t)

S dt((Qn +T)zn, zn), + (Ru(t, C) = Ru(t, Co) zn) , + +(fa(t.Co) = fu(t.Co)o2), =
(gn(t. Ca) = gn(t. Co), zn)En + (@5 (t, C), 20D, (16)
Denote

ch(t) = _Fncn(t) + 6n(t: Cn)
Due to assumptions (4) - (7), ay # 0.
(Rn(t, C,) — Ru(t,Cp), zn) = ((a;(xt, U,V0) — a;(x,t, U, VU), (U - U)x,)Q

> v||v(T - U)||L2(Q |(@i(x, 6.0, V0) = ai(x,t, U, v0), (T = U) )a |
Because,
|(al(x t0,V0) = ai(x,t U, V0), (0 = U) o | < &||v(T - U)||L @+ Coll(T - U)||L @
|(h(6.6) — falt. ). 2), | = la(xt0,90) = a(x t,U,v0),T - U )q |
< e||v(T - U)||L o Gl - U)||L @

Likewise,
~ ~ 2 ~ 2
(9n(8,Ca) = n(6,Co) 7)< €[|[V(T = V)| o) + Cll(T = O],
where the constants Co, C1, C2 depend on the quantities [|U|lfxqy, [|T ||Hl @

Then, estimating the terms of the right side of equality (16) using the Cauchy inequality and
substituting the obtained estimates, setting € = v/6, we obtain

d ~ ~
= ((Qu+ T2 2), +[[V(T - O, 0 < CIT=Ull;_ +lidnliz,
Integrating the last inequality from zero to t and takmg into account the inequality
IzalIE, <= ||U U||
((Qn +Tw)zn 20), 2 (Quzn z0)e, — adlizallf, = (1 - a)(ann, Z)e, = (1= [T U]|;
17
|(@n + T)70(0), 20 (0)),, | < (@ (0), 20(0)),, + aqlizll3, << c(1 + @[T (x,0) = U O)]|,

L@
JNIDlIZ, dt < 2Kl I12 + 2K 118, ( CIZ, 0. (18)
we get
|T - U||L2 —||v(T - U)||L2(Q) _—f |T (x,0) = U(x, t)” dt+—(2k||F 1% +

~ 2
+2 116,06, CO Ny 00Ey + (1 +)||T (x,0) — Ulx, O)IIZZ)
Denote

LT Go) = U0, dt =y (),

—(c(1 +a)||U (x,0) — U(x, 0)|| (19)

1(ﬂ)

+2Kk|IT, 17 + 2 | nax 18n(t, COIE, c0,8)) = Fa (D)
nll<

A Bi-Monthly, Peer Reviewed International Journal [95]
Volume 14


https://zienjournals.com/

Texas Journal of Engineering and Technology ISSN NO: 2770-4491

https://zienjournals.com Date of Publication:28-11-2022

Then, using the obtained inequalities and the lemma on differential inequalities, we obtain the
inequality for y, (t) [16]
Ya(t) < (e“F = 1)/CLE(t) (20)

From here,
2 2

Loo(0,T.L 5) L,(0,t,L,Q))
_ 2 _ _
< pOHF?l ” + (&1 ”An“%?n + pZHFnHZ + P3 Ilan(tr Cn)llzz((),T,En)
where constants p; (i = 0,3) do not depend onn .

T (x,8) — U, D) +||v(T-0)|

Conclusion. The stability of the approximate solution of the Galerkin method in the space L, (0, T, Hl(ﬂ))
for problem (1) is established under the condition that (3)-(7) is satisfied and the coordinate system in the
space L , () is strongly minimal.
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