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In the case of sufficiently extended underground structures and an impact directed perpendicular to its 

longitudinal axis, the environment and lining are reduced to a plane problem of the dynamic theory of 

elasticity (or viscoelasticity). Assuming a generalized plane strain state, the equation of motion in mixtures 

has the form [1]. 
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Where   and   - elastic moduli, called Lame constants; b


- volume force density vector )0( =b ;  

- material density, −u


 - material density ( )ar =  and external ( )br =  Gruniya cylindrical must satisfy the 

following conditions. The problem is solved in the displacement potentials: 

kuiuu r


+= ;   








+




=

rr
ur

1
  ;  

rr
u




−




=








1
. 

Potentials   and   satisfy the wave equation 
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where   and   - are displacement potentials, С  and С - phase velocities of propagation of 

expansion and shear waves. It was shown in [1] that the fluid can be considered ideal, and its motion is 

irrotational and isothermal. At pressures up to 100 MPa, the motion of a liquid is more fully and 

satisfactorily described by wave equations for the velocity potentials of liquid particles [2]. 
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where С0- the speed of sound in a liquid. Potential φ0 and fluid velocity vector V


 addicted 

0gradV =


. The fluid pressure can be determined using the linearized Cauchy-Lagrange integral 
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 , where ρ0- liquid density. Under the condition of non-separated flow around the liquid, the 

normal component of the liquid velocity and the shell on the surface of their contact must be equal, i.e..: 
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where S0- contact surface; n-normal shell surfaces;  

ur - moving the shell along the normal. An incident expansion (or shear) plane wave is considered to 

propagate in the positive x direction and is represented as follows:  
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where  0 or  0 – amplitude values; ω- circular frequency; 
222 / pC =  and 222 /  C=  - wave 

numbers of expansion and shift, respectively. If the boundary of the region in which the wave field is studied 

goes to infinity, then additional conditions at infinity are required and are discussed in detail in [1, 2]. 
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If the function   satisfies the Helmholtz equation (in our case it satisfies), then the uniqueness of the 

solution of the problem in an infinite region can be ensured by the requirements (3). Here r is the radius in a 

cylindrical coordinate system. At the boundary of two bodies, the condition of rigid contact is satisfied, i.e. 

the condition of equality of the corresponding displacements and stresses is satisfied: 
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One of the problems is devoted to the propagation of harmonic shear waves in a two-dimensional 

elastic body with a round hole (reinforced). In this formulation, the superposition of suitable waves and 

shear and tension-compression waves reflected from the hole is studied, which leads to stress concentration. 

The solution of the diffraction problem for a plane harmonic shear wave was obtained in [1], which has the 

following form (
*

 =  / 0; =20; 0 – incident wave amplitude,  - Lame coefficient)    
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где Hn(a) – 

Hankel function;  = /Cp;  = /CS; Cp и CS – respectively, the propagation velocity of longitudinal and 

transverse waves;  - circular frequency,  = 3,14. Calculations by methods of the theory of elasticity give, 

in the absence of a lining around the hole and a wavelength significantly greater than the diameter of the 

hole, the following approximate expression for stresses along the perimeter:   

( ) ,sin2sin/1
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 Where G – soil shear module, 0 – velocity amplitude of the incident seismic wave. In view of the 

fact that long seismic waves, as a rule, exceed the characteristic dimensions of the cross-sectional workings 

(for example, diameter D), of particular interest is the solution of diffraction problems for long-wave effects, 

i.e. when 1


D
. At long wavelengths ( 16,004,0 =



D ) the maximum coefficients of dynamic 

concentrations turned out to be 5 – 10% more than with the corresponding biaxial static loading (λ→)[1]. 
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At 16,0


D
 dynamic stress concentrations are significantly lower than static ones. The presented 

numerical results show that, in contrast to the case of a hard inclusion [1], the value К depends very much 

on 


D
. This difference can be attributed to the possibility of propagation of generalized Rayleigh-type waves 

on the concave free cylindrical surface of the cavity. Taking into account the viscous properties of the 

environmental material when calculating the action of seismic waves reduces stresses and displacements by 

10–15%. 

Calculations show that at fixed values of the amplitude and duration of the incident wave, with an 

increase in the acoustic parameters of the liquid, deflections and forces also increase. In the region of long 

waves, the stress distributions of pipes with and without liquid differ by up to 15%, and in the region of short 

waves, in some frequency values, they differ by up to 40%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Dependence of the stress concentration factor on the wavelength. 

 

The obtained numerical results allow us to draw the following conclusions: 

 

 - the phenomenon of local resonance manifests itself more strongly for seismic action in the form of 

SV-waves than P-waves. 

- the presence of water in the pipes increases the seismic impact on them by 10-20%. 

- the denser the soil of the embankment, the less seismic impact on underground pipes. For l>10D, 

the dynamic problem is reduced to a quasi-static one. 

- Changes in wall thickness and concrete class have practically no effect on the dynamic soil pressure 

on reinforced concrete pipes under seismic impact. It can be noted that the design of the optimal lining, 

taking into account the influence of dynamic loading, generally requires, in addition to the usual choice of 

thickness and structural material, the coordination of the latter with the properties of the surrounding rock 

mass. 

Literature: 

1. Kabulov V.K.Algorithmization in the theory of elasticity.-T:FAN.1968.-394c. 

2. Strelchuk N.A., Slavin S.K., Shaposhnikov V.N. Investigation of the dynamic stress state of tunnel 

lining under the influence of blast waves. // Izv.Universities. Building and architecture, 1971, No. 9, -

S. 129-136. 

2

3
 =

 

2


 =  

P 

 

A

  D

  
 

K  

3 

2 

1 

0 0,2 0,4 0,6 0,8 1,0 1,2 /D  

https://zienjournals.com/


Texas Journal of Engineering and Technology                                                                                          ISSN NO: 2770-4491 
https://zienjournals.com                                                                                                            Date of Publication:28-04-2022 
______________________________________________________________________________________________________________________________________ 

________________________________________________________________________________________________________________________________ 
A Bi-Monthly, Peer Reviewed International Journal                                                                                                     [56] 
Volume 7 

3. Chekalkin A.A., Pankov A.A. Lectures on structural mechanics from composite materials / Perm. 

state tech. Univ., Perm, 1999 .- 150 p. 

4. Safarov I.I. Oscillations and waves in dissipative inhomogeneous media and  Designs - Tashkent. 

Fan. 1992 - 250 s. 

5. 5.Safarov I.I., Edgorov U.T., Zhuraev T.O., Dzhumaev Z.F. About steady-state  oscillations of three-

layer cylindrical bodies // Mechanics muammolari. 2000.№. 1, p. 31-34. 

6. Akhmedov Sh.R., Zhuraev T.O., Agzamova D. On resonance damping vibrations of tubular 

structures. - Bukhoro, 1998.-c. 44-45 

7. KMK 11-7-81 Construction in seismic areas. Design Standards. - M.,1981.-49 p. 

8. Demin A.M. Patterns of manifestations of slope deformations in quarries. - M: Science. 1981. - 144 

p. 

9. Vlasov V.Z. Structural mechanics of thin-walled spatial systems. -M.:Stroyizdat,  1949, -250 p. 

10. Muskhelishvili N.I. Some basic tasks of the mathematical theory of elasticity.  –M: Nauka, 1966.- 

478 p. 

11. Rashidov T.R. The dynamic theory of earthquake resistance of complexsystems of underground 

structures. – Tashkent: Fan. 1973. - 180 p. 

12. Pac Y.H., Mow C.C. The Diffraction of Elastic Wufes and Dunamic stress Constration-N.J. Crane 

Russah and 1973. - 675. 

13. Okamoto S. Seismic resistance of engineering structures. - M.: Stroyizdat,1980 - 344 p. 

14. Sultanov K.S. Interaction of an extended underground structure with soil underdynamic loading // 

Sat. scientific labor. Dynamics of heterogeneous media and  the interaction of waves with structural 

elements.-Novosibirsk.-1987.-S.150- 157 

15. Muborakov Ya.N. Earthquake resistance of underground structures such as cylindrical shells. - 

Tashkent: Fan, 1991, - 218. 

16. Shirinkulov T.Sh., Zaretsky Yu.K. Creep and soil consolidation. - Tashkent:FAN, UzSSR, 1986. - 

391 p. 

17. Abdurashidov K.S. , Eisenberg. M., Zhunusov T.Zh. and other seismic resistance of structures. - M.: 

Science, 1989. - 193 p. 

18. Mirsaidov M.M., Troyanovsky I.E. Dynamics of heterogeneous systems. –Tashkent: Fan. - 1990. - 

106 p. 

19. I.M. Idriss, H. B. Sed and H. Dezflulian Influence of Geometry and Material Properties on the 

Seismik Respose of Soil Deposits, Prog. of IV - WCEF.,1969, pp 255 - 261. 

20. Safarov I.I. Oscillations and waves in dissipative heterogeneous media and structures - Toshkent. 

Fan. 1992 - 250 s. 

 

 

 

 

 

 

 

 

 

 

 

 

https://zienjournals.com/

