##plugins.themes.academic_pro.article.main##

Abstract

The genus of Leishmania, intracellular protozoan parasite, Leishmania that belongs to the Trypanosomatida Order under Kinetoplastea Class of Euglenozoa Phylum, includes a large number of species that infect a wide variety of vertebrates and invertebrates, such as rodents and humans resulting in variable clinical manifestations. Taxonomy of the parasite is not fully elucidated, and debate continues not only over the number of species in the subgenus, but also over the definition of species. Leishmaniasis, caused by several different strains of Leishmania, remains a major public health problem globally. The disease is transmitted by mosquitoes and is endemic in mainly arthropod-carrying tropical areas. Due to fast changes in global climate, mosquitoes are expected to expand widely to become more susceptible to disease. There are four main types of disease including cutaneous leishmaniasis (CL), diffuse cutaneous (DCL), mucocutaneous leishmaniasis (MCL) and visceral leishmaniasis (VL) which varies in their characteristics. However, sequalae of the disease based upon the species of parasite and an immune response. With few treatments available, antimonials compounds remain very important in the therapeutic strategies which used most commonly in different areas. However, drug resistance has recently emerged including resistance to the oral therapy for the most recent drug used against VL. This alarming has led to use of non-toxic drugs to treatment of disease and to prescription-related complications. The prospect of widespread drug resistance therefore indicates an urgent need to develop effective new treatments for leishmaniasis. In conclusion, there is a necessary for limiting the complications and preventing death. Additionally, vector control can be implemented wherever possible

Keywords

Cutaneous leishmaniasis Diffuse-cutaneous leishmaniasis Mucocutaneous leishmaniasis

##plugins.themes.academic_pro.article.details##

How to Cite
Gufran J. Shamkhi, & Sheama Alali. (2023). Review Article: Impact of Leishmania spp. on Public Health. Texas Journal of Agriculture and Biological Sciences, 15, 26–36. Retrieved from https://zienjournals.com/index.php/tjabs/article/view/3739

References

  1. Abbate, J. M., Arfuso, F., Napoli, E., Gaglio, G., Giannetto, S., Latrofa, M. S., and Brianti, E. (2019). Leishmania infantum in wild animals in endemic areas of southern Italy. Comparative Immunology, Microbiology and Infectious Diseases, 67, 101374.
  2. Abdellatif, M. Z., El-Mabrouk, K., and Ewis, A. A. (2013). An epidemiological study of cutaneous leishmaniasis in Al-jabal Al-gharbi, Libya. The Korean journal of parasitology, 51(1), 75.
  3. Adhikari, A., Gupta, G., Majumder, S., Banerjee, S., Bhattacharjee, S., Bhattacharya, P., and Majumdar, S. (2012). Mycobacterium indicus pranii (Mw) re-establishes host protective immune response in Leishmania donovani infected macrophages: critical role of IL-12. PLoS One, 7(7), e40265.
  4. Akbari, M., Oryan, A., and Hatam, G. (2021). Immunotherapy in treatment of leishmaniasis. Immunology Letters, 233, 80-86.
  5. Akhoundi, M., Kuhls, K., Cannet, A., Votýpka, J., Marty, P., Delaunay, P., and Sereno, D. (2016). A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS neglected tropical diseases, 10(3), e0004349.
  6. Alemayehu, B., and Alemayehu, M. (2017). Leishmaniasis: a review on parasite, vector and reservoir host. Health Science Journal, 11(4), 1.
  7. Al-Kamel, M. A. N. (2017). Leishmaniasis and malignancy: A review and perspective. Clinical Skin Cancer, 2(1-2), 54-58.
  8. Amro, A., Moskalenko, O., Hamarsheh, O., and Frohme, M. (2022). Spatiotemporal analysis of cutaneous leishmaniasis in Palestine and foresight study by projections modelling until 2060 based on climate change prediction. Plos one, 17(6), e0268264.
  9. Aoun, J., Habib, R., Charaffeddine, K., Taraif, S., Loya, A., and Khalifeh, I. (2014). Caseating granulomas in cutaneous leishmaniasis. PLoS neglected tropical diseases, 8(10), e3255.
  10. Azim, M., Khan, S. A., Ullah, S., Ullah, S., and Anjum, S. I. (2021). Therapeutic advances in the topical treatment of cutaneous leishmaniasis: A review. PLoS Neglected Tropical Diseases, 15(3), e0009099.
  11. Babiker, A. M., Ravagnan, S., Fusaro, A., Hassan, M. M., Bakheit, S. M., Mukhtar, M. M., and Capelli, G. (2014). Concomitant infection with Leishmania donovani and L. major in single ulcers of cutaneous leishmaniasis patients from Sudan. Journal of Tropical Medicine, 2014.
  12. Banerjee, A., Bhattacharya, P., Joshi, A. B., Ismail, N., Dey, R., and Nakhasi, H. L. (2016). Role of pro-inflammatory cytokine IL-17 in Leishmania pathogenesis and in protective immunity by Leishmania vaccines. Cellular immunology, 309, 37-41.
  13. Borghi, S. M., Fattori, V., Conchon-Costa, I., Pinge-Filho, P., Pavanelli, W. R., and Verri, W. A. (2017). Leishmania infection: painful or painless?. Parasitology research, 116, 465-475.
  14. Brito, N. C., Rabello, A., and Cota, G. F. (2017). Efficacy of pentavalent antimoniate intralesional infiltration therapy for cutaneous leishmaniasis: A systematic review. PloS one, 12(9), e0184777.
  15. Brotherton, M. C., Bourassa, S., Légaré, D., Poirier, G. G., Droit, A., and Ouellette, M. (2014). Quantitative proteomic analysis of amphotericin B resistance in Leishmania infantum. International Journal for Parasitology: Drugs and Drug Resistance, 4(2), 126-132.
  16. Carneiro, G., Aguiar, M. G., Fernandes, A. P., and Ferreira, L. A. M. (2012). Drug delivery systems for the topical treatment of cutaneous leishmaniasis. Expert opinion on drug delivery, 9(9), 1083-1097.
  17. Carvalho, S. H., Frézard, F., Pereira, N. P., Moura, A. S., Ramos, L. M., Carvalho, G. B., and Rocha, M. O. (2019). American tegumentary leishmaniasis in Brazil: a critical review of the current therapeutic approach with systemic meglumine antimoniate and short‐term possibilities for an alternative treatment. Tropical Medicine and International Health, 24(4), 380-391.
  18. Cecílio, P., Cordeiro-da-Silva, A., and Oliveira, F. (2022). Sand flies: Basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Communications biology, 5(1), 305.
  19. Chakravarty, J., Hasker, E., Kansal, S., Singh, O. P., Malaviya, P., Singh, A. K., and Sundar, S. (2019). Determinants for progression from asymptomatic infection to symptomatic visceral leishmaniasis: A cohort study. PLoS neglected tropical diseases, 13(3), e0007216.
  20. Claborn, D. M. (2010). The biology and control of leishmaniasis vectors. Journal of global infectious diseases, 2(2), 127.
  21. Cota, G. F., de Sousa, M. R., Fereguetti, T. O., Saleme, P. S., Alvarisa, T. K., and Rabello, A. (2016). The cure rate after placebo or no therapy in American cutaneous leishmaniasis: a systematic review and meta-analysis. PloS one, 11(2), e0149697.
  22. Crauwels, P., Bohn, R., Thomas, M., Gottwalt, S., Jäckel, F., Krämer, S., and Zandbergen, G. V. (2015). Apoptotic-like Leishmania exploit the host s autophagy machinery to reduce T-cell-mediated parasite elimination. Autophagy, 11(2), 285-297.
  23. Cuestas, D., Forero, Y., Galvis, I., Peñaranda, E., Cortes, C., Motta, A., and Puentes, J. (2018). Drug reaction with eosinophilia and systemic symptoms (DRESS) and multiple organ dysfunction syndrome (MODS): one more reason for a new effective treatment against leishmaniasis. International Journal of Dermatology, 57(11), 1304-1313.
  24. Dantas-Torres, F., Miró, G., Bowman, D. D., Gradoni, L., and Otranto, D. (2019). Culling dogs for zoonotic visceral leishmaniasis control: the wind of change. Trends in parasitology, 35(2), 97-101.
  25. Dar, M. J., Din, F. U., and Khan, G. M. (2018). Sodium stibogluconate loaded nano-deformable liposomes for topical treatment of leishmaniasis: macrophage as a target cell. Drug delivery, 25(1), 1595-1606.
  26. de Morais-Teixeira, E., Gallupo, M. K., Rodrigues, L. F., Romanha, A. J., and Rabello, A. (2014). In vitro interaction between paromomycin sulphate and four drugs with leishmanicidal activity against three New World Leishmania species. Journal of Antimicrobial Chemotherapy, 69(1), 150-154.
  27. De Muylder, G., Ang, K. K., Chen, S., Arkin, M. R., Engel, J. C., and McKerrow, J. H. (2011). A screen against Leishmania intracellular amastigotes: comparison to a promastigote screen and identification of a host cell-specific hit. PLoS Neglected Tropical Diseases, 5(7), e1253.
  28. de Vries, H. J., Reedijk, S. H., and Schallig, H. D. (2015). Cutaneous leishmaniasis: recent developments in diagnosis and management. American journal of clinical dermatology, 16, 99-109.
  29. Dorlo, T. P., Balasegaram, M., Beijnen, J. H., and de Vries, P. J. (2012). Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. Journal of Antimicrobial Chemotherapy, 67(11), 2576-2597.
  30. Dostálová, A., and Volf, P. (2012). Leishmania development in sand flies: parasite-vector interactions overview. Parasites and vectors, 5(1), 1-12.
  31. Escrivani, D. O., Lopes, M. V., Poletto, F., Ferrarini, S. R., Sousa-Batista, A. J., Steel, P. G., and Rossi-Bergmann, B. (2020). Encapsulation in lipid-core nanocapsules improves topical treatment with the potent antileishmanial compound CH8. Nanomedicine: Nanotechnology, Biology and Medicine, 24, 102121.
  32. Fatima, N., Muhammad, S. A., Mumtaz, A., Tariq, H., Shahzadi, I., Said, M. S., and Dawood, M. (2016). Fungal metabolites and Leishmaniasis: A review. Br. J. Pharm. Res, 12, 1-12.
  33. Guma, G. T. (2018). Visceral leishmaniasis in Ethiopia: Innate immune functions, biomarkers of cure and potential roles of cattle for transmission (Doctoral dissertation, Universität zu Lübeck).
  34. Handler, M. Z., Patel, P. A., Kapila, R., Al-Qubati, Y., and Schwartz, R. A. (2015). Cutaneous and mucocutaneous leishmaniasis: differential diagnosis, diagnosis, histopathology, and management. Journal of the American Academy of Dermatology, 73(6), 911-926.
  35. Ikeogu, N. M., Akaluka, G. N., Edechi, C. A., Salako, E. S., Onyilagha, C., Barazandeh, A. F., and Uzonna, J. E. (2020). Leishmania immunity: advancing immunotherapy and vaccine development. Microorganisms, 8(8), 1201.
  36. Inbar, E., Hughitt, V. K., Dillon, L. A., Ghosh, K., El-Sayed, N. M., and Sacks, D. L. (2017). The transcriptome of Leishmania major developmental stages in their natural sand fly vector. MBio, 8(2), e00029-17.
  37. Iqbal, H. (2012). Comparative efficacy of Aloe vera and Tamarix aphylla against cutaneous leishmaniasis. International Journal of Basic Medical Sciences and Pharmacy (IJBMSP), 2(2).
  38. Jamshaid, H., Din, F. U., and Khan, G. M. (2021). Nanotechnology based solutions for anti-leishmanial impediments: a detailed insight. Journal of Nanobiotechnology, 19, 1-51.
  39. Jowkar, F., Dehghani, F., and Jamshidzadeh, A. (2012). Is topical nitric oxide and cryotherapy more effective than cryotherapy in the treatment of old world cutaneous leishmaniasis?. Journal of dermatological treatment, 23(2), 131-135.
  40. Kassiri, H., Lotfi, M., Farajifard, P., and Kassiri, E. (2014). Laboratory diagnosis, clinical manifestations, epidemiological situation and public health importance of cutaneous leishmaniasis in Shushtar County, Southwestern Iran. Journal of Acute Disease, 3(2), 93-98.
  41. Kattoof, W. M. (2018). Intralesional streptomycin: New, safe, and effective therapeutic option for cutaneous leishmaniasis. Mustansiriya Medical Journal, 17(1), 42-46.
  42. Kelly, P. H., Bahr, S. M., Serafim, T. D., Ajami, N. J., Petrosino, J. F., Meneses, C., and Wilson, M. E. (2017). The gut microbiome of the vector Lutzomyia longipalpis is essential for survival of Leishmania infantum. MBio, 8(1), e01121-16.
  43. Keogan, D. (2018). The Development of Metallohydroxamates as Novel Anti-Bacterial and Anti-Leishmanial Agents (Doctoral dissertation, Royal College of Surgeons in Ireland).
  44. Keshav, P., Goyal, D. K., and Kaur, S. (2021). Promastigotes of Leishmania donovani exhibited sensitivity towards the high altitudinal plant Cicer microphyllum. Current Research in Parasitology and Vector-borne Diseases, 1, 100040.
  45. Khan, W., and Awan, Z. U. R. (2021). LEISHMANIA TROPICA A CUTANEOUS DISEASE DETECTED IN PEOPLE RESIDING IN NORTH WAZIRISTAN DISTRICT, KHYBER PAKHTUNKHWA PAKISTAN. FUUAST Journal of Biology, 11(2), 119-124.
  46. Klein, S. L., and Flanagan, K. L. (2016). Sex differences in immune responses. Nature Reviews Immunology, 16(10), 626-638.
  47. Kolářová, I., and Valigurová, A. (2021). Hide-and-Seek: A game played between parasitic protists and their hosts. Microorganisms, 9(12), 2434.
  48. Kupani, M., Pandey, R. K., and Mehrotra, S. (2021). Neutrophils and Visceral Leishmaniasis: Impact on innate immune response and cross‐talks with macrophages and dendritic cells. Journal of Cellular Physiology, 236(4), 2255-2267.
  49. Lahouiti, K., Maniar, S., and Bekhti, K. (2013). Seasonal fluctuations of phlebotomines sand fly populations (Diptera: Psychodidae) in the Moulay Yacoub province, centre Morocco: effect of ecological factors. African Journal of Environmental Science and Technology, 7(11), 1028-1031.
  50. Lévêque, M. F., Lachaud, L., Simon, L., Battery, E., Marty, P., and Pomares, C. (2020). Place of serology in the diagnosis of zoonotic leishmaniases with a focus on visceral leishmaniasis due to Leishmania infantum. Frontiers in Cellular and Infection Microbiology, 10, 67.
  51. Lewis, M. D., Paun, A., Romano, A., Langston, H., Langner, C. A., Moore, I. N., and Sacks, D. L. (2020). Fatal progression of experimental visceral leishmaniasis is associated with intestinal parasitism and secondary infection by commensal bacteria, and is delayed by antibiotic prophylaxis. PLoS pathogens, 16(4), e1008456.
  52. Liu, D., and Uzonna, J. E. (2012). The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response. Frontiers in cellular and infection microbiology, 2, 83.
  53. Mahmoud, M. Z. (2014). Assessment of visceral leishmaniasis consequences using ultrasound. Open Journal of Radiology, 2014.
  54. Malli, S., Pomel, S., Ayadi, Y., Deloménie, C., Da Costa, A., Loiseau, P. M., and Bouchemal, K. (2019). Topically applied chitosan-coated poly (isobutylcyanoacrylate) nanoparticles are active against cutaneous leishmaniasis by accelerating lesion healing and reducing the parasitic load. ACS Applied Bio Materials, 2(6), 2573-2586.
  55. Mann, S., Frasca, K., Scherrer, S., Henao-Martínez, A. F., Newman, S., Ramanan, P., and Suarez, J. A. (2021). A review of leishmaniasis: current knowledge and future directions. Current tropical medicine reports, 8, 121-132.
  56. Maurício, I. L. (2018). Leishmania taxonomy. The Leishmaniases: Old Neglected Tropical Diseases, 15-30.
  57. Medkour, H., Davoust, B., Dulieu, F., Maurizi, L., Lamour, T., Marie, J. L., and Mediannikov, O. (2019). Potential animal reservoirs (dogs and bats) of human visceral leishmaniasis due to Leishmania infantum in French Guiana. PLoS Neglected Tropical Diseases, 13(6), e0007456.
  58. Mohammadiha, A., Dalimi, A., Mohebali, M., Sharifi, I., Mahmoudi, M., Mirzaei, A., and Ghorbanzadeh, B. (2018). Molecular identification and phylogenetic classification of Leishmania spp. isolated from human cutaneous leishmaniasis in Iran: A cross-sectional study. Iranian journal of parasitology, 13(3), 351.
  59. Mohebali, M., Kazemirad, E., Hajjaran, H., Kazemirad, E., Oshaghi, M. A., Raoofian, R., and Teimouri, A. (2019). Gene expression analysis of antimony resistance in Leishmania tropica using quantitative real-time PCR focused on genes involved in trypanothione metabolism and drug transport. Archives of dermatological research, 311, 9-17.
  60. Montakhab‐Yeganeh, H., Abdossamadi, Z., Zahedifard, F., Taslimi, Y., Badirzadeh, A., Saljoughian, N., and Rafati, S. (2017). Leishmania tarentolae expressing CXCL‐10 as an efficient immunotherapy approach against Leishmania major‐infected BALB/c mice. Parasite Immunology, 39(10), e12461.
  61. Moore, E. M., and Lockwood, D. N. (2010). Treatment of visceral leishmaniasis. Journal of global infectious diseases, 2(2), 151.
  62. Olías-Molero, A. I., de la Fuente, C., Cuquerella, M., Torrado, J. J., and Alunda, J. M. (2021). Antileishmanial drug discovery and development: time to reset the model?. Microorganisms, 9(12), 2500.
  63. Oliveira, S. S., Ferreira, C. S., Branquinha, M. H., Santos, A. L., Chaud, M. V., Jain, S., and Severino, P. (2021). Overcoming multi‐resistant leishmania treatment by nanoencapsulation of potent antimicrobials. Journal of Chemical Technology and Biotechnology, 96(8), 2123-2140.
  64. Olivier, M., and Zamboni, D. S. (2020). Leishmania Viannia guyanensis, LRV1 virus and extracellular vesicles: a dangerous trio influencing the faith of immune response during muco-cutaneous leishmaniasis. Current Opinion in Immunology, 66, 108-113.
  65. Palić, S., Bhairosing, P., Beijnen, J. H., and Dorlo, T. P. (2019). Systematic review of host-mediated activity of miltefosine in leishmaniasis through immunomodulation. Antimicrobial agents and chemotherapy, 63(7), e02507-18.
  66. Pareyn, M., Kochora, A., Van Rooy, L., Eligo, N., Vanden Broecke, B., Girma, N., and Massebo, F. (2020). Feeding behavior and activity of Phlebotomus pedifer and potential reservoir hosts of Leishmania aethiopica in southwestern Ethiopia. PLoS neglected tropical diseases, 14(3), e0007947.
  67. Patino, L. H., Muskus, C., and Ramírez, J. D. (2019). Transcriptional responses of Leishmania (Leishmania) amazonensis in the presence of trivalent sodium stibogluconate. Parasites and vectors, 12(1), 1-15.
  68. Piyasiri, S. B., Samaranayake, T. N., Silva, H., Manamperi, N. H., and Karunaweera, N. D. (2022). ELISA‐based evaluation of antibody response to Leishmania in a region endemic for cutaneous leishmaniasis. Parasite Immunology, 44(9), e12940.
  69. Pourmohammadi, B., Motazedian, M. H., Hatam, G. R., Kalantari, M., Habibi, P., and Sarkari, B. (2010). Comparison of three methods for diagnosis of cutaneous leishmaniasis.
  70. Pradhan, S., Schwartz, R. A., Patil, A., Grabbe, S., and Goldust, M. (2022). Treatment options for leishmaniasis. Clinical and experimental dermatology, 47(3), 516-521.
  71. Pruzinova, K., Sadlova, J., Seblova, V., Homola, M., Votypka, J., and Volf, P. (2015). Comparison of bloodmeal digestion and the peritrophic matrix in four sand fly species differing in susceptibility to Leishmania donovani. PloS one, 10(6), e0128203.
  72. Rasti, S., Ghorbanzadeh, B., Kheirandish, F., Mousavi, S. G., Pirozmand, A., Hooshyar, H., and Abani, B. (2016). Comparison of molecular, microscopic, and culture methods for diagnosis of cutaneous leishmaniasis. Journal of Clinical Laboratory Analysis, 30(5), 610-615.
  73. Reimão, J. Q., Coser, E. M., Lee, M. R., and Coelho, A. C. (2020). Laboratory diagnosis of cutaneous and visceral leishmaniasis: current and future methods. Microorganisms, 8(11), 1632.
  74. Remadi, L., Haouas, N., Chaara, D., Slama, D., Chargui, N., Dabghi, R., and Babba, H. (2016). Clinical presentation of cutaneous leishmaniasis caused by Leishmania major. Dermatology, 232(6), 752-759.
  75. Rios-Marco, P., Marco, C., Gálvez, X., Jiménez-López, J. M., and Carrasco, M. P. (2017). Alkylphospholipids: An update on molecular mechanisms and clinical relevance. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1859(9), 1657-1667.
  76. Romero, G. A., and Boelaert, M. (2010). Control of visceral leishmaniasis in Latin America—a systematic review. PLoS neglected tropical diseases, 4(1), e584.
  77. Rostamian, M., and Niknam, H. M. (2019). Leishmania tropica: What we know from its experimental models. Advances in Parasitology, 104, 1-38.
  78. Ruiz-Postigo, J. A., Jain, S., Mikhailov, A., Maia-Elkhoury, A. N., Valadas, S., Warusavithana, S., and Gasimov, E. (2021). Global leishmaniasis surveillance: 2019-2020, a baseline for the 2030 roadmap/Surveillance mondiale de la leishmaniose: 2019-2020, une periode de reference pour la feuille de route a l'horizon 2030. Weekly epidemiological record, 96(35), 401-420.
  79. Saldarriaga, O. A., Castellanos-Gonzalez, A., Porrozzi, R., Baldeviano, G. C., Lescano, A. G., de Los Santos, M. B., and Travi, B. L. (2016). An innovative field-applicable molecular test to diagnose cutaneous Leishmania Viannia spp. infections. PLoS neglected tropical diseases, 10(4), e0004638.
  80. Santos, S. S., de Araujo, R. V., Giarolla, J., El Seoud, O., and Ferreira, E. I. (2020). Searching for drugs for Chagas disease, leishmaniasis and schistosomiasis: a review. International journal of antimicrobial agents, 55(4), 105906.
  81. Schallig, H. D., Hu, R. V., Kent, A. D., van Loenen, M., Menting, S., Picado, A., and Cruz, I. (2019). Evaluation of point of care tests for the diagnosis of cutaneous leishmaniasis in Suriname. BMC infectious diseases, 19(1), 1-6.
  82. Seifert, K., Munday, J., Syeda, T., and Croft, S. L. (2011). In vitro interactions between sitamaquine and amphotericin B, sodium stibogluconate, miltefosine, paromomycin and pentamidine against Leishmania donovani. Journal of antimicrobial chemotherapy, 66(4), 850-854.
  83. Shaddel, M., Sharifi, I., Karvar, M., Keyhani, A., and Baziar, Z. (2018). Cryotherapy of cutaneous leishmaniasis caused by Leishmania major in BALB/c mice: A comparative experimental study. Journal of Vector Borne Diseases, 55(1), 42.
  84. Shirbazou, S., and Jafari, M. (2012). The multiple forms of Leishmania major in BALB/C mice lung in iran. Iranian Journal of Parasitology, 7(2), 99.
  85. Shirzadi, M. R. (2019). Lipsosomal amphotericin B: a review of its properties, function, and use for treatment of cutaneous leishmaniasis. Research and reports in tropical medicine, 11-18.
  86. Silva-Almeida, M., Pereira, B. A. S., Ribeiro-Guimarães, M. L., and Alves, C. R. (2012). Proteinases as virulence factors in Leishmania spp. infection in mammals. Parasites and vectors, 5, 1-10.
  87. Simon, I., Wissing, K. M., Del Marmol, V., Antinori, S., Remmelink, M., Nilufer Broeders, E., and Cascio, A. (2011). Recurrent leishmaniasis in kidney transplant recipients: report of 2 cases and systematic review of the literature. Transplant Infectious Disease, 13(4), 397-406.
  88. Solano-Gallego, L., Cardoso, L., Pennisi, M. G., Petersen, C., Bourdeau, P., Oliva, G., and Baneth, G. (2017). Diagnostic challenges in the era of canine Leishmania infantum vaccines. Trends in Parasitology, 33(9), 706-717.
  89. Solomon, M., Pavlotsky, F., Leshem, E., Ephros, M., Trau, H., and Schwartz, E. (2011). Liposomal amphotericin B treatment of cutaneous leishmaniasis due to Leishmania tropica. Journal of the European Academy of Dermatology and Venereology, 25(8), 973-977.
  90. Solomon, M., Schwartz, E., Pavlotsky, F., Sakka, N., Barzilai, A., and Greenberger, S. (2014). Leishmania tropica in children: a retrospective study. Journal of the American Academy of Dermatology, 71(2), 271-277.
  91. Sundar, S., and Singh, O. P. (2018). Molecular diagnosis of visceral leishmaniasis. Molecular diagnosis and therapy, 22(4), 443-457.
  92. Sundar, S., Singh, A., Rai, M., and Chakravarty, J. (2015). Single-dose indigenous liposomal amphotericin B in the treatment of Indian visceral leishmaniasis: a phase 2 study. The American journal of tropical medicine and hygiene, 92(3), 513.
  93. Sunter, J., and Gull, K. (2017). Shape, form, function and Leishmania pathogenicity: from textbook descriptions to biological understanding. Open biology, 7(9), 170165.
  94. Tabah, E. N. (2018). Skin neglected tropical diseases in Cameroon: the need for integrated control and elimination (Doctoral dissertation, University_of_Basel).
  95. Teixeira, D. E., Benchimol, M., Rodrigues, J. C., Crepaldi, P. H., Pimenta, P. F., and de Souza, W. (2013). The cell biology of Leishmania: how to teach using animations. PLoS pathogens, 9(10), e1003594.
  96. Telleria, E. L., Sant'Anna, M. R., Ortigão-Farias, J. R., Pitaluga, A. N., Dillon, V. M., Bates, P. A., and Dillon, R. J. (2012). Caspar-like gene depletion reduces Leishmania infection in sand fly host Lutzomyia longipalpis. Journal of Biological Chemistry, 287(16), 12985-12993.
  97. Ullah, N., Uzair, M., Khan, N. U., and Butt, G. (2022). Comparative cost-effectiveness of intralesional meglumine antimoniate alone versus cryotherapy plus intralesional meglumine antimoniate in cutaneous leishmaniasis: Experience from a high capacity dermatology centre. Journal of Pakistan Association of Dermatologists, 32(2), 353-359.
  98. Vakil, N. H., Fujinami, N., and Shah, P. J. (2015). Pharmacotherapy for leishmaniasis in the United States: focus on miltefosine. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 35(5), 536-545.
  99. Van Assche, T., Deschacht, M., da Luz, R. A. I., Maes, L., and Cos, P. (2011). Leishmania–macrophage interactions: Insights into the redox biology. Free Radical Biology and Medicine, 51(2), 337-351.
  100. Van Griensven, J., Carrillo, E., López-Vélez, R., Lynen, L., and Moreno, J. (2014). Leishmaniasis in immunosuppressed individuals. Clinical Microbiology and Infection, 20(4), 286-299.
  101. von Stebut, E., and Tenzer, S. (2018). Cutaneous leishmaniasis: Distinct functions of dendritic cells and macrophages in the interaction of the host immune system with Leishmania major. International Journal of Medical Microbiology, 308(1), 206-214.
  102. Werneck, G. L. (2014). Visceral leishmaniasis in Brazil: rationale and concerns related to reservoir control. Revista de saude publica, 48, 851-856.