##plugins.themes.academic_pro.article.main##

Abstract

The inhibitory action of peptides refers to a group of microorganisms that peptides can influence and inhibit. Most peptides have limited inhibitory action, as their effect is limited to bacteria which close to the bacteria that produce them, especially lactic acid peptides. As most of them are characterized by a broad inhibitory action extending to include unrelated bacteria from Gram-positive bacteria and pathogenic or food spoilage bacteria, and in some cases, they include lactose-negative bacteria too. The main application of lactic acid bacteria is to use it as priorities, as it contributes to strengthening the flavor, feeling, and nutritional value of the different fermentation through three main paths, which are the fermentation of sugars, fats analysis, and the main path to manufacture and develop the flavor which is the protein analysis. In order to develop new functional foods that provide a beneficial health effect, many tests are carried out for lactic acid bacteria strains. To be used in food production, taking into consideration the economic feasibility, required sensory characteristics, and consumer acceptance. In addition, testing it on the living body to know its effect on the digestive system using analytical methods. Bioactive peptides are considered valuable nutritional components that have biological properties and many therapeutic effects for many health disorders, especially heart diseases and cancer, in addition to many chronic diseases. And because it has a functional factor that has beneficial effects on the health of the consumer, it has been studied extensively, as it can be absorbed in the intestine without digestion, it is preferable to be used over free amino acids, as it is transmitted at the same level as the transport of free amino acids by the cell. Moreover, free amino acids make foods hyperactive and may cause diarrhea, while some bioactive peptides may cause allergic reactions, as the allergenic effects disappear with partial weight reduction. However, the use of peptides remains a matter of great importance in food preservation in terms of providing food safety, ensuring the quality of the food supply, and prolonging the shelf life

Keywords

Bioactive Peptides Inhibitory Lactic Acid

##plugins.themes.academic_pro.article.details##

How to Cite
Jinan Mohammed Fayyadh AL-Rikabi, Kithar Rasheed Majeed, & Dhia Falih AL-Fekaik. (2022). Bioactive peptides with the inhibitory activity that are produced by lactic acid bacteria; their importance and mechanism. Texas Journal of Agriculture and Biological Sciences, 10, 44–51. Retrieved from https://zienjournals.com/index.php/tjabs/article/view/2727

References

  1. Abdel-Saadawi, Issa (2009). Theoretical Biochemistry (Version 1, Volume 1). Amman, Jordan: Dar Al Masira for publishing, printing and distribution.
  2. Abriouel, H. E; Valdivia, M.; Martinez-Bueno, M. and Maqueda Galvez A. (2003). Journal of Microbiological Methods 55, 599.
  3. Adams, M. R. and Nicolaides, L. (1997). Review of the sensitivity of different food borne pathogens to fermentation. J. Food Control, 8(5/6): 227-239.
  4. Alvarez-Sieiro, P.; Montalbán-López, M.; Mu, D.; and Kuipers, O. P. (2016). Bacteriocins of lactic acid bacteria: extending the family. Applied microbiology and biotechnology, 100(7), 2939-2951.‏
  5. Balasubramanyam, B. V. and Varadaraj, M. C. (1998). Cultural conditions for the production of bacteriocin by a native isolate of Lactobacillus delbruecki ssp. bulgaricus CFR 2028 in milk medium. Journal of applied microbiology, 84(1), 97-102.‏
  6. Björck, L. (1978). Antibacterial effect of the lactoperoxidase system on psychrotrophic bacteria in milk. Journal of Dairy Research, 45(1), 109-118.‏
  7. Breukink, E.; Wiedemann, I.; Kraaij, C. V.; Kuipers, O. P.; Sahl, H. G. and De Kruijff, B. (1999). Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science, 286(5448), 2361-2364.
  8. Chakrabarti, S.; Guha, S. and Majumder, K. (2018). Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients, 10(11), 1738.
  9. Chen, Y.; Ludescher, R. D. and Montville, T. J. (1997). Electrostatic interactions, but not the YGNGV consensus motif, govern the binding of pediocin PA-1 and its fragments to phospholipid vesicles. Applied and Environmental Microbiology, 63(12), 4770-4777.‏
  10. Chikindas, M. L.; García-Garcerá, M. J.; Driessen, A. J. M.; Ledeboer, A. M.; Nissen-Meyer, J.; Nes, I.F.; Abee, T.; Konings, W. N. and Venema, G. (1993). Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cells. Applied and Environmental Microbiology, 59(11): 3577–3584.
  11. Cubas‐Cano, E.; González‐Fernández, C.; Ballesteros, M. and Tomás‐Pejó, E. (2018). Biotechnological advances in lactic acid production by lactic acid bacteria: lignocellulose as novel substrate. Biofuels, bioproducts and biorefining, 12(2), 290-303.‏
  12. Daliri, E. B. M.; Oh, D. H. and Lee, B. H. (2017). Bioactive peptides. Foods, 6(5), 32.
  13. Davey, G. P. (1981). Mode of action of diplococcin, a bacteriocin from Streptococcus cremoris 346 [milk products]. New Zealand Journal of Dairy Science and Technology (New Zealand).
  14. Delgado, A.; Brito, D.; Fevereiro, P.; Peres, C. and Marques, J. F. (2001). Antimicrobial activity of L. plantarum, isolated from a traditional lactic acid fermentation of table olives. Le lait, 81(1-2), 203-215.‏
  15. Eijsink, V. G.; Axelsson, L.; Diep, D. B.; Håvarstein, L. S.; Holo, H. and Nes, I. F. (2002). Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek, 81(1), 639-654.
  16. Eş, I.; Khaneghah, A. M.; Barba, F. J.; Saraiva, J. A.; Sant'Ana, A. S. and Hashemi, S. M. B. (2018). Recent advancements in lactic acid production-a review. Food Research International, 107, 763-770.‏
  17. Ferreira, C. L. and Gilliland, S. E. (1988). Bacteriocin involved in premature death of Lactobacillus acidophilus NCFM during growth at pH 6. Journal of dairy science, 71(2), 306-315.‏
  18. Fields, K.; Falla, T. J.; Rodan, K. and Bush, L. (2009). Bioactive peptides: signaling the future. Journal of cosmetic dermatology, 8(1), 8-13.‏
  19. Flynn, S.; Van Sinderen, D.; Thornton, G. M.; Holo, H.; Nes, I. F. and Collins, J. K. (2002). Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118The GenBank accession number for the sequence reported in this paper is AF408405. Microbiology, 148(4), 973-984.‏
  20. Gasu, E. N.; Ahor, H. S. and Borquaye, L. S. (2018). Peptide extract from Olivancillaria hiatula exhibits broad-spectrum antibacterial activity. BioMed Research International.
  21. Georgalaki, M.; Papadimitriou, K.; Anastasiou, R.; Pot, B.; Van Driessche, G.; Devreese, B. and Tsakalidou, E. (2013). Macedovicin, the second food-grade lantibiotic produced by Streptococcus macedonicus ACA-DC 198. Food microbiology, 33(1), 124-130.
  22. Gilliland, S. E.; Carman, J. S. and Lydiard, R. B. (1985). Bacterial starter cultures for foods (p. 145). Boca Raton, FL: CRC Press.
  23. Guichard, E. (2006). Flavour retention and release from protein solutions. Biotechnology Advances, 24(2), 226 – 229.
  24. Hoffmann, S.; Devleesschauwer, B.; Aspinall, W.; Cooke, R.; Corrigan, T.; Havelaar, A. and Hald, T. (2017). Attribution of global foodborne disease to specific foods: Findings from a World Health Organization structured expert elicitation. PloS one, 12(9), e0183641.‏
  25. Jack, R.W.; Tagg, J.R. and Ray, B. (1995). Bacteriocin of grampositive bacteria, Microbiology Review, 59, (2), 171-200.
  26. Kaden, R.; Engstrand, L.; Rautelin, H. and Johansson, C. (2018). Which methods are appropriate for the detection of Staphylococcus argenteus and is it worthwhile to distinguish S. argenteus from S. aureus? Infection and Drug Resistance, 11, 2335.
  27. Klaenhammer, T. R. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS microbiology reviews, 12(1-3), 39-85.‏
  28. Ko, S. H.; and Ahn, C. (2000). Bacteriocin production by Lactococcus lactis KCA2386 isolated from white kimchi. Food Science and Biotechnology, 9(4), 263-269.‏
  29. Korhonen, H.; and Pihlanto, A. (2006). Bioactive peptides: Production and functionality. International Dairy Journal, 16(9), 945-960.
  30. Lavermicocca, P., Valeria, F., Evidente, A., Lazzaroni, S., Cor- setti, A. and Gobbetti, M. (2000). Purification and charac- terization of novel antifungal compounds by sourdough. Lactobacillus plantarum 21 B. Appl Environ Microbiol 66(9),4084–4090.
  31. Li, M.; Havelaar, A. H.; Hoffmann, S.; Hald, T.; Kirk, M. D.; Torgerson, P. R. and Devleesschauwer, B. (2019). Global disease burden of pathogens in animal source foods, 2010. PloS one, 14(6), e0216545.‏
  32. Lu, Z.; Wei, M. and Yu, L. (2012). “Enhancement of pilot scale production of L (+)- lactic acid by fermentation coupled with separation using membrane bioreactor,” Process Biochem. 47(3), 410-415.
  33. Martinez, F. A. C.; Balciunas, E. M.; Salgado, J. M.; González, J. M. D.; Converti, A. and de Souza Oliveira, R. P. (2013). Lactic acid properties, applications and production: A review. Trends in food science and technology, 30(1), 70-83.
  34. Martinez, M. I.; Rodriguez, E.; Medina, M.; Hernandez, P. E. and Rodriguez, J. M. (1998). Detection of specific bacteriocin- producing lactic acid bacteria by colony hybridization. Journal of Applied Microbiology, 84(6), 1099-1103.
  35. Messens, W. and De Vuyst, L. (2002) Inhibitory substances produced by Lactobacilli isolated from sourdoughs – a review. Int J Food Microbiol 72(1-2), 31–43.
  36. Mine, Y.; Li-Chan, E. and Jiang, B. (2010). Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals (1st ed.). Ames Lowa, Avenue, USA: Blackwell Publishing Ltd. and Institute of Food Technologists.
  37. Mohanty, D. P.; Mohapatra, S.; Misra, S. and Sahu, P. S. (2015). Milk derived bioactive peptides and their impact on human health–A review. Saudi Journal of Biological Sciences, 23(5): 577-583.
  38. Möller, N. P.; Scholz-Ahrens, K. E.; Roos, N. and Schrezenmeir, J. (2008). Bioactive peptides and proteins from foods: indication for health effects. European journal of nutrition, 47(4), 171-182.‏
  39. Naidu, A. S.; Bidlack, W. R. and Clemens, R, A. (1999). Probiotic spectra of lactic acid bacteria (LAB). In: Critical Reviews in food science and nutrition., 39(1): 1-58.
  40. Nomura, M. (1967). Colicins and related bacteriocins. Annual Reviews in Microbiology, 21(1), 257-284.‏
  41. Perez Espitia, P. J.; de Fátima Ferreira Soares, N.; dos Reis Coimbra, J. S.; de Andrade, N. J.; Souza Cruz, R. and Alves Medeiros, E. A. (2012). Bioactive peptides: synthesis, properties, and applications in the packaging and preservation of food. Comprehensive Reviews in Food Science and Food Safety, 11(2), 187-204.‏
  42. Pucci, M. J.; Veda Muthu, E. R.; Kunka, B. S. and Vandenburgh, P. A. (1988). Inhibition of Listeria monocytogenes by using bacteriocin PA-1 produced by Pedi coccus acetolactic PAC 1.0. Applied and Environmental Microbiology, 54(10):2349-2353.
  43. Rahayu, W.P.; Astawan, M.; Wresdiyati, T. and Mariska, S. (2013). Antidiarrheal and antioxidative capability of synbiotic yogurt to the rats. Int. Food Res. J. 20(2),703-709.
  44. Richard, C.; Cañon, R.; Naghmouchi, K.; Bertrand, D.; Prévost, H. and Drider, D. (2006). Evidence on correlation between number of disulfide bridge and toxicity of class IIa bacteriocins. Food microbiology, 23(2), 175-183.‏
  45. Rutherfurd, S. M.; Chung, T. K.; Thomas, D. V.; Zou, M. L. and Moughan, P. J. (2012). Effect of a novel phytase on growth performance, apparent metabolizable energy, and the availability of minerals and amino acids in a low-phosphorus corn-soybean meal diet for broilers. Poultry Science, 91(5), 1118-1127.
  46. Sánchez, A. and Vázquez, A. (2017). Bioactive peptides: A review. Food Quality and Safety, 1(1), 29-46.‏
  47. Saranya, S. and Himachinpagam, N.: (2011). Antibiotic activity and antibiotic sensitivity of lactic acid bacteria from fermented dairy products. Advances in Applied Science Research, 2 (4): 528-534.
  48. Schirwitz, C. (2013). Purification of peptides in high-complexity arrays: a new method for the specific surface exchange and purification of entire peptide libraries. Springer Science and Business Media.‏
  49. Semenkovich, N. P. (2017). The Effects of the Gut Microbiota on the Host Chromatin Landscape. Washington University in St. Louis.‏
  50. Settanni, L. and Corsetti, A. (2008). Application of bacteriocins in vegetable food biopreservation. International Journal of Food Microbiology, 121(2), 123-138.
  51. Sidari, R. and Caridi, A. (2011). Methods for detecting enterohaemorrhagic Escherichia coli in food. Food reviews international, 27(2), 134-153.
  52. Simoes, M.; Simões, L. C. and Vieira, M. J. (2010). A review of current and emergent biofilm control strategies. LWT-Food Science and Technology, 43(4), 573-583.‏
  53. Simova, E. D.; Beshkova, D. B. and Dimitrov, Z. P. (2009). Characterization and antimicrobial spectrum of bacteriocins produced by lactic acid bacteria isolated from traditional Bulgarian dairy products. Journal of Applied Microbiology, 106(2), 692-701.‏
  54. Solak, B. B. and Akin, N. (2012). Health benefits of whey protein: areview. Journal of Food Science and Engineering, 2(3): 129-137.
  55. Tagg, J. R.; Dajani, A. S. and Wannamaker, L. W. (1976). Bacteriocins of gram-positive bacteria. Bacteriological Reviews, 40(3):722-756.
  56. Wahlstrom, G. and Saris, P.E.J. (1999). A nisin bioassay based on bioluminescence. Applied and Environmental Microbiology, 65(8), 3742-3745.
  57. Walsh, C. J.; Guinane, C. M.; Hill, C.; Ross, R. P.; O’Toole, P. W. and Cotter, P. D. (2015). In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project’s reference genome database. BMC microbiology, 15(1), 1-11.‏ ‏
  58. Wang, J.; Yin, T.; Xiao, X.; He, D.; Xue, Z.; Jiang, X. and Wang, Y. (2018). StraPep: a structure database of bioactive peptides. Database, 2018.‏
  59. Wasey, A. and Salen, P. (2019). Escherichia coli (E. coli 0157 H7). StatPearls. Treasure Island (FL): Stat-Pearls Publishing. Available from: https://www. ncbi. nlm. nih. gov/books/NBK507845/. Accessed January.
  60. Waterworth, P. M. (1978). Quantitative methods for bacterial sensitivity testing. Laboratory methods in antimicrobial chemotherapy, 35-37.‏
  61. Zhang, Q. Y.; Yan, Z. B.; Meng, Y. M.; Hong, X. Y.; Shao, G.; Ma, J. J. and Fu, C. Y. (2021). Antimicrobial peptides: Mechanism of action, activity and clinical potential. Military Medical Research, 8(1), 1-25.‏